
Poster: LLMalware: An LLM-Powered Robust and Efficient
Android Malware Detection Framework
Zijing Ma

The Hong Kong Polytechnic University
Hong Kong, China

zijing.ma@connect.polyu.hk

Leming Shen
The Hong Kong Polytechnic University

Hong Kong, China
leming.shen@connect.polyu.hk

Xinyu Huang
The Hong Kong Polytechnic University

Hong Kong, China
unixy-xinyu.huang@connect.polyu.hk

Yuanqing Zheng∗
The Hong Kong Polytechnic University

Hong Kong, China
csyqzheng@comp.polyu.edu.hk

ABSTRACT
Android malware pose severe threats to the mobile application
ecosystem. Although well-trained malware detection models can
initially achieve satisfactory performance, they struggle with un-
seen Android apps constantly emerging over time, which is known
as the concept drift problem. Previous methods frequently col-
lect and label new apps to update the aging models. This process,
however, necessitates domain knowledge and incurs prohibitive
retraining overhead. To address this problem, this paper presents
LLMalware, which integrates three novel technical components.
First, we propose full-spectrum automated feature extraction, which
automatically extracts diverse malware features from various de-
tection models. Next, we develop cohesive feature fusion, which
combines these features to build effective representations for ro-
bust malware detection. Lastly, we devise agile knowledge update
to enable efficient online malware detection via an LLM-based au-
tomated agent and a dynamically maintained malware knowledge
base. Extensive experiments demonstrate LLMalware can mitigate
concept drift with an average improvement of approximately 10%
in F1-score over state-of-the-art baselines.

CCS CONCEPTS
• Security and privacy→Malware and its mitigation.

KEYWORDS
Malware Detection, Metric Learning, Large Language Model

ACM Reference Format:
Zijing Ma, Leming Shen, Xinyu Huang, and Yuanqing Zheng. 2025. Poster:
LLMalware: An LLM-Powered Robust and Efficient Android Malware De-
tection Framework. In Proceedings of the 2025 ACM SIGSAC Conference
on Computer and Communications Security (CCS ’25), October 13–17, 2025,
Taipei, Taiwan. ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/
3719027.3760709

∗Corresponding author.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CCS ’25, October 13–17, 2025, Taipei, Taiwan
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1525-9/2025/10.
https://doi.org/10.1145/3719027.3760709

User

Update

Behavior
App Store

Malware Evolution Victim

Evolved
& Passed

Adversary

Missed
due to drift

Malware
Detection

Detected

Evolving

User

Update

Behavior

App Store

Malware Evolution Victim

Evolved
Malware

Adversary

Missed
Malware

Detection
System

Detected
Malware

Evolving

Figure 1: Limitations of existing malware detection methods.
The unseen and evolved apps can evade the detection systems
and appear in app stores, posing significant risks to users.
1 INTRODUCTION
Android malware pose severe threats to users with privacy leakage,
data theft, and even financial losses. As reported by AV-TEST [1],
nearly 35 million Android malware have been detected by June
2024, with a growth rate of nearly 100,000 per month. Manually
analyzing and labeling such large amounts of malware requires
substantial human efforts and incurs prohibitive costs. Existing
malware detection methods train various machine learning models
to extract and analyze features from static analysis and dynamic
analysis.

Nonetheless, these machine learning models are inherently sus-
ceptible to the concept drift problem, as illustrated in Figure 1. As
malware keep evolving in order to evade detection, current models
quickly become obsolete with significant performance degradation
over time. Moreover, an individual detection method can effectively
identify a certain type of malware but may struggle with others.
This is because different detection models tend to focus on distinct
characteristics of known malware. Thus, solely relying on a trained
detection model potentially suffers from the risk of overlooking
unseen malware. The evolving nature of malware motivates us to de-
velop a detection system with enhanced robustness against the concept
drift problem.

Tomitigate the concept drift problem, one possible approach is to
fuse the static and dynamic features to fully exploit the orthogonal
detection capabilities of diverse detection methods. This approach,
however, requires substantial human efforts and domain expertise:
First, the reports generated by dynamic analysis typically contain
vast amounts of information about apps’ routine operations, with
only a small portion capturing essential malware-related behaviors.
Moreover, identifying and extracting relevant features from these

https://doi.org/10.1145/3719027.3760709
https://doi.org/10.1145/3719027.3760709
https://doi.org/10.1145/3719027.3760709

CCS ’25, October 13–17, 2025, Taipei, Taiwan Zijing Ma, Leming Shen, Xinyu Huang, and Yuanqing Zheng

New
App

Android Apps

Full-Spectrum Automated
Feature Extraction

Static Analysis

Drebin

Malscan

MamaDroid

Static Features

MobSF

Dynamic Analysis

Report

RAG
Agent

Cohesive Feature Fusion

Fusion Networks
(Autoencoder)

Malware

Behaviors

Dynamic Malware Feature Embedding
Split

Prompt

Feature

Extraction

LLM-Powered Report Analyzer

Embedding

Model

Concatenation
& Late Fusion

Fu
sed

Featu

re

Agile Knowledge Update
for Malware Detection

Feature
Fusion

Feature
Extraction

Knowledge
Base

LLM Agent

Retrieval
Prompt

Retrieved

New

Multi-Metric
Search

& Voting-Based
Labeling

Prediction











Labels



Figure 2: The overall workflow and the key technical components of LLMalware.

reports requires highly specialized domain expertise, making such
a detection process prohibitive and impractical for large-scale real-
world deployment. Second, the evolving nature of malware often
introduces unforeseen behavioral mutations, necessitating adequate
and timely adaptation of detection models to stay effective.

To tackle the concept drift problem, this paper presents LLMal-
ware, an LLM-powered malware detection framework that lever-
ages the latest advances of LLMs to improve the robustness and effi-
ciency of malware detection. LLMalware automates analysis report
interpretation using LLMs and extracts useful information without
developer intervention. This approach substantially improves the
efficiency of report analysis. Moreover, LLMalware develops a fu-
sion network to integrate multiple features extracted from diverse
detection models coherently. The feature fusion can effectively im-
prove the detection robustness against the concept drift problem.
LLMalware further transforms the conventional malware detection
process to on-demand and agile knowledge updates of the malware
knowledge base, which facilitates the continuous evolution of our
detection models at significantly low costs.

We implement LLMalware and carry out extensive evaluations
with more than 130,000 Android apps across 6 years. Results show
that LLMalware significantly outperforms state-of-the-art (SOTA)
baselines when facing new types of malware with substantial con-
cept drift. Specifically, LLMalware achieves an 8.3% higher F1-score
and a much lower aging rate, with cumulative gaps reduced by
210% compared to baselines.

2 SYSTEM DESIGN
Figure 2 illustrates the workflow of LLMalware, comprising three
key technical components: full-spectrum automated feature extrac-
tion, cohesive feature fusion, and agile knowledge update for malware
detection.

2.1 Full-Spectrum Automated Feature
Extraction

LLMalware combines static analysis (i.e., Drebin [3], MamaDroid
[6], Malscan [7]) and dynamic analysis (i.e., MobSF [2]) to extract di-
verse features from the apps. For dynamic analysis, MobSF records
app behaviors during runtime and generates detailed reports. To
automate the extraction of relevant behavior information from
the reports, LLMalware leverages LLMs to interpret and analyze
these reports, significantly reducing human efforts. Specifically, as
shown in Figure 3, LLMalware first leverages a section-aware report
chunking method to split the reports by sections, reducing the con-
text length for LLM processing. It then applies a chain-of-thought

CoT Prompt for Report Interpretation

System Message
You are an expert in Android malware detection.
Given an Android app dynamic report generated
by MobSF, you need to extract API calls from it.

Let’s think step by step.
1. You need to locate the API call section.
2. You can extract the API calls in the section.

I will show you an example of API calls.
ANDROID API
com/appsgeyser/sdk/push/AlarmReceiver.java

Output Format
The output should be in JSON format.

User Message
Please search the report and extract API calls.

Report

Section-Aware
Report Chunking

Encapsulated
Prompts

Output

Figure 3: The workflow of LLM-powered automatic report
analyzer.
(CoT) prompt to guide the LLM step-by-step in extracting detailed
behavior-related information in the reports (e.g., API calls). An ex-
ample of behavior-related information is included in the prompt
for LLM interpretation. This approach, combined with carefully
designed prompts and one-shot in-context learning, enables the
LLM to efficiently process complex malware analysis reports and
transform them into numerical embeddings for further fusion, thus
enhancing malware detection robustness without manual interven-
tion.

2.2 Cohesive Feature Fusion
A naive fusion approach is to directly concatenate features from
different methods. However, this approach results in feature mis-
alignment, where longer feature vectors overshadow shorter ones,
and the curse of dimensionality, which can cause overfitting. To
overcome this, LLMalware designs a cohesive feature embedding
network that employs an autoencoder to compress and align the
feature. This ensures that each feature set contributes fairly dur-
ing fusion. Specifically, the backbone of the network is a hybrid
CNN-Transformer structure for the encoder to capture both local
and global patterns. The encoder compresses the features into a
low-dimensional latent space, while a decoder reconstructs the
original features to ensure crucial information is retained. A hybrid
loss function combining MSE loss

L𝑀𝑆𝐸 =
1
𝑁

𝑁∑︁
𝑖=1

∥ 𝑓𝑖 − 𝑓𝑖 ∥22 (1)

and triplet loss

L𝑇𝑟𝑖 =
1
𝑁

𝑁∑︁
𝑖=1

max(∥ 𝑓𝑎𝑖 − 𝑓𝑝𝑖 ∥22 − ∥ 𝑓𝑎𝑖 − 𝑓𝑛𝑖 ∥22 +𝑚, 0) (2)

Poster: LLMalware: An LLM-Powered Robust and Efficient Android Malware Detection Framework CCS ’25, October 13–17, 2025, Taipei, Taiwan

is used to minimize reconstruction errors while optimizing the
distance of features, enhancing feature discrimination between
malicious and benign apps. For the MSE loss, 𝑁 is the number
of training samples, 𝑓𝑖 and 𝑓𝑖 are the original input features and
the reconstructed features, respectively. For the triplet loss, 𝑎𝑖 , 𝑝𝑖 ,
and 𝑛𝑖 denote the 𝑖-th anchor, positive, and negative sample, re-
spectively. After training, late fusion is applied to combine the
compressed features from the different detection methods. This ap-
proach compensates for weaknesses in any single detection method,
and enhances malware detection performance. The fused features
are then stored in a knowledge base for future detection tasks.

2.3 Agile Knowledge Update
LLMalware introduces an agile knowledge update to tackle the
rapidly evolving nature of Android malware, enabling frequent up-
dates with minimal overhead. The system builds a feature-centric
knowledge base that stores fused features and corresponding la-
bels, acting as external memory for an LLM-based agent. The agent
automatically uses a multi-metric search strategy to retrieve the
most similar features from the knowledge base, improving detec-
tion without frequent model retraining. This allows for on-demand
knowledge evolution, where the agent progressively incorporates
new malware data, enhancing the detection performance of previ-
ously unseen threats. Specifically, the knowledge base is initialized
with fused features from known apps and can be dynamically up-
dated with new samples, enabling continuous malware detection
evolution. To mitigate the issues of varying representation quality,
the agent employs a multi-metric search using cosine similarity,
Manhattan distance, and Euclidean distance to improve retrieval
accuracy. A majority voting mechanism determines the final label
based on the retrieved feature labels and returns to the agent, ensur-
ing robust classification. The system selects the top 𝐾 new samples
with lower similarity features to update the knowledge base.

3 IMPLEMENTATION & EVALUATION
3.1 Experimental Setup
We implement LLMalware using the PyTorch 2.3.0 framework. We
test LLMalware on a dataset that includes over 130,000 apps from the
past six years. GPT-4 is selected to evaluate the impact on the per-
formance of LLMalware. We compare LLMalware with 6 baselines,
including Drebin [3], MamaDroid [6], Malscan [7], Transcendent
[4], CL [5], AppPoet [8].

Overall performance. We evaluate the performance of LLMal-
ware across different periods and measure the F1-score and BER
cumulative gap of different malware detection methods, denoted
as 𝐶𝐺𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 (𝑡) =

∑𝑡
𝑖=1 (𝐹𝐿𝐿𝑀𝑎𝑙𝑤𝑎𝑟𝑒 (𝑖) − 𝐹𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 (𝑖)), where

𝐹𝐿𝐿𝑀𝑎𝑙𝑤𝑎𝑟𝑒 (𝑖) and 𝐹𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 (𝑖) are the F1-score of LLMalware and
baselines. Specifically, we use data collected in Year 0 as the training
set and data in Year 1 - Year 5 as the test set. The test set is divided
into multiple subsets by months to assess the influence on the
performance over different periods. The results are shown in Fig-
ure 4. As shown in Figure 4(a), the cumulative gaps of baselines like
Drebin and MaMaDroid increase to 54% and 76%, while the SOTA
baselines, including Transcendent, CL, and AppPoet, reach gaps of
around 20%, indicating a significant model deterioration compared

Yea
r1

Yea
r2

Yea
r3

Yea
r4

Yea
r5

Yea
r6

Time

0

2

4

6

8

F
1-

sc
or

e
C

um
ul

at
iv

e
G

ap Drebin
MaMaDroid
Malscan
Transcendent
CL
AppPoet
LLMalware

(a) F1-score cumulative gap.

Yea
r1

Yea
r2

Yea
r3

Yea
r4

Yea
r5

Yea
r6

Time

-4

-3

-2

-1

0

B
E

R
 C

um
ul

at
iv

e
G

ap

Drebin
MaMaDroid
Malscan
Transcendent
CL
AppPoet
LLMalware

(b) BER cumulative gap.

Figure 4: The overall performance of LLMalware and the
baselines over time.
to LLMalware. By Year 5, the gaps of Transcendent, CL, and App-
Poet further expand to around 210%, highlighting their declining
robustness and the model aging problem over time. Moreover, as
shown in Figure 4(b), the BER cumulative gaps of all baselines in-
crease. For example, the gaps of baselines such as MaMaDroid and
CL increase from 70% and 20% in Year 0 to 230% and 79% in Year 5,
indicating significant misclassification.

4 CONCLUSION AND FUTUREWORK
We propose LLMalware, an LLM-powered robust and efficient An-
droid malware detection framework against the concept drift prob-
lem. The key insight of LLMalware is to fully exploit the orthogonal
detection capabilities of diverse detection methods. To achieve this,
LLMalware develops and incorporates three key technical com-
ponents: 1○ full-spectrum automated feature extraction to extract
static and dynamic features, 2○ cohesive feature fusion to construc-
tively integrate features of distinct detection methods, and 3○ agile
knowledge update for malware detection to continuously update the
knowledge of LLM for unseen app detection. Experimental results
demonstrate the effectiveness of the proposed feature extraction
and fusion approach. Such technical components jointly help miti-
gate the urgent issue of concept drift in malware detection. In the
future, we aim to realize finer-grained malware family classification
such that defenders can process the malware strategically.

ACKNOWLEDGMENTS
We sincerely thank the anonymous reviewers for their constructive
comments and invaluable suggestions. This paper is supported by
Hong Kong GRF under Grant No. 15206123 and 15211924.

REFERENCES
[1] AV-TEST. https://www.av-test.org/en/.
[2] MobSF. https://github.com/MobSF/Mobile-Security-Framework-MobSF.git.
[3] Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, Konrad Rieck,

and CERT Siemens. 2014. Drebin: Effective and explainable detection of android
malware in your pocket. In 21st Annual Network and Distributed System Security
Symposium (NDSS). 23–26.

[4] Federico Barbero, Feargus Pendlebury, Fabio Pierazzi, and Lorenzo Cavallaro.
2022. Transcending transcend: Revisiting malware classification in the presence
of concept drift. In 2022 IEEE Symposium on Security and Privacy (S&P). 805–823.

[5] Yizheng Chen, Zhoujie Ding, and David Wagner. 2023. Continuous learning for
android malware detection. In 32nd USENIX Security Symposium (USENIX Security
23). 1127–1144.

[6] Enrico Mariconti, Lucky Onwuzurike, Panagiotis Andriotis, Emiliano De Cristo-
faro, Gordon J. Ross, and Gianluca Stringhini. 2017. MaMaDroid: Detecting An-
droid Malware by Building Markov Chains of Behavioral Models. In 24th Annual
Network and Distributed System Security Symposium (NDSS).

[7] Yueming Wu, Xiaodi Li, Deqing Zou, Wei Yang, Xin Zhang, and Hai Jin. 2019.
Malscan: Fast market-wide mobile malware scanning by social-network central-
ity analysis. In 34th IEEE/ACM International Conference on Automated Software
Engineering (ASE). 139–150.

[8] Wenxiang Zhao, Juntao Wu, and Zhaoyi Meng. 2025. Apppoet: Large language
model based android malware detection via multi-view prompt engineering. Expert
Systems with Applications 262 (2025), 125546.

https://www.av-test.org/en/
https://github.com/MobSF/Mobile-Security-Framework-MobSF.git

	Abstract
	1 Introduction
	2 System Design
	2.1 Full-Spectrum Automated Feature Extraction
	2.2 Cohesive Feature Fusion
	2.3 Agile Knowledge Update

	3 Implementation & Evaluation
	3.1 Experimental Setup

	4 Conclusion and future work
	Acknowledgments
	References

