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ABSTRACT
Android malware pose severe threats to the mobile application
ecosystem. Although well-trained malware detection models can
initially achieve satisfactory performance, they struggle with un-
seen Android apps constantly emerging over time, which is known
as the concept drift problem. Previous methods frequently col-
lect and label new apps to update the aging models. This process,
however, necessitates domain knowledge and incurs prohibitive
retraining overhead. To address this problem, this paper presents
LLMalware, which integrates three novel technical components.
First, we propose full-spectrum automated feature extraction, which
automatically extracts diverse malware features from various de-
tection models. Next, we develop cohesive feature fusion, which
combines these features to build effective representations for ro-
bust malware detection. Lastly, we devise agile knowledge update
to enable efficient online malware detection via an LLM-based au-
tomated agent and a dynamically maintained malware knowledge
base. Extensive experiments demonstrate LLMalware can mitigate
concept drift with an average improvement of approximately 10%
in F1-score over state-of-the-art baselines.
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Figure 1: Limitations of existing malware detection methods.
The unseen and evolved apps can evade the detection systems
and appear in app stores, posing significant risks to users.
1 INTRODUCTION
Android malware pose severe threats to users with privacy leakage,
data theft, and even financial losses. As reported by AV-TEST [1],
nearly 35 million Android malware have been detected by June
2024, with a growth rate of nearly 100,000 per month. Manually
analyzing and labeling such large amounts of malware requires
substantial human efforts and incurs prohibitive costs. Existing
malware detection methods train various machine learning models
to extract and analyze features from static analysis and dynamic
analysis.

Nonetheless, these machine learning models are inherently sus-
ceptible to the concept drift problem, as illustrated in Figure 1. As
malware keep evolving in order to evade detection, current models
quickly become obsolete with significant performance degradation
over time. Moreover, an individual detection method can effectively
identify a certain type of malware but may struggle with others.
This is because different detection models tend to focus on distinct
characteristics of known malware. Thus, solely relying on a trained
detection model potentially suffers from the risk of overlooking
unseen malware. The evolving nature of malware motivates us to de-
velop a detection system with enhanced robustness against the concept
drift problem.

Tomitigate the concept drift problem, one possible approach is to
fuse the static and dynamic features to fully exploit the orthogonal
detection capabilities of diverse detection methods. This approach,
however, requires substantial human efforts and domain expertise:
First, the reports generated by dynamic analysis typically contain
vast amounts of information about apps’ routine operations, with
only a small portion capturing essential malware-related behaviors.
Moreover, identifying and extracting relevant features from these
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Figure 2: The overall workflow and the key technical components of LLMalware.

reports requires highly specialized domain expertise, making such
a detection process prohibitive and impractical for large-scale real-
world deployment. Second, the evolving nature of malware often
introduces unforeseen behavioral mutations, necessitating adequate
and timely adaptation of detection models to stay effective.

To tackle the concept drift problem, this paper presents LLMal-
ware, an LLM-powered malware detection framework that lever-
ages the latest advances of LLMs to improve the robustness and effi-
ciency of malware detection. LLMalware automates analysis report
interpretation using LLMs and extracts useful information without
developer intervention. This approach substantially improves the
efficiency of report analysis. Moreover, LLMalware develops a fu-
sion network to integrate multiple features extracted from diverse
detection models coherently. The feature fusion can effectively im-
prove the detection robustness against the concept drift problem.
LLMalware further transforms the conventional malware detection
process to on-demand and agile knowledge updates of the malware
knowledge base, which facilitates the continuous evolution of our
detection models at significantly low costs.

We implement LLMalware and carry out extensive evaluations
with more than 130,000 Android apps across 6 years. Results show
that LLMalware significantly outperforms state-of-the-art (SOTA)
baselines when facing new types of malware with substantial con-
cept drift. Specifically, LLMalware achieves an 8.3% higher F1-score
and a much lower aging rate, with cumulative gaps reduced by
210% compared to baselines.

2 SYSTEM DESIGN
Figure 2 illustrates the workflow of LLMalware, comprising three
key technical components: full-spectrum automated feature extrac-
tion, cohesive feature fusion, and agile knowledge update for malware
detection.

2.1 Full-Spectrum Automated Feature
Extraction

LLMalware combines static analysis (i.e., Drebin [3], MamaDroid
[6], Malscan [7]) and dynamic analysis (i.e., MobSF [2]) to extract di-
verse features from the apps. For dynamic analysis, MobSF records
app behaviors during runtime and generates detailed reports. To
automate the extraction of relevant behavior information from
the reports, LLMalware leverages LLMs to interpret and analyze
these reports, significantly reducing human efforts. Specifically, as
shown in Figure 3, LLMalware first leverages a section-aware report
chunking method to split the reports by sections, reducing the con-
text length for LLM processing. It then applies a chain-of-thought
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Figure 3: The workflow of LLM-powered automatic report
analyzer.
(CoT) prompt to guide the LLM step-by-step in extracting detailed
behavior-related information in the reports (e.g., API calls). An ex-
ample of behavior-related information is included in the prompt
for LLM interpretation. This approach, combined with carefully
designed prompts and one-shot in-context learning, enables the
LLM to efficiently process complex malware analysis reports and
transform them into numerical embeddings for further fusion, thus
enhancing malware detection robustness without manual interven-
tion.

2.2 Cohesive Feature Fusion
A naive fusion approach is to directly concatenate features from
different methods. However, this approach results in feature mis-
alignment, where longer feature vectors overshadow shorter ones,
and the curse of dimensionality, which can cause overfitting. To
overcome this, LLMalware designs a cohesive feature embedding
network that employs an autoencoder to compress and align the
feature. This ensures that each feature set contributes fairly dur-
ing fusion. Specifically, the backbone of the network is a hybrid
CNN-Transformer structure for the encoder to capture both local
and global patterns. The encoder compresses the features into a
low-dimensional latent space, while a decoder reconstructs the
original features to ensure crucial information is retained. A hybrid
loss function combining MSE loss

L𝑀𝑆𝐸 =
1
𝑁

𝑁∑︁
𝑖=1

∥ 𝑓𝑖 − 𝑓𝑖 ∥22 (1)

and triplet loss

L𝑇𝑟𝑖 =
1
𝑁

𝑁∑︁
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max(∥ 𝑓𝑎𝑖 − 𝑓𝑝𝑖 ∥22 − ∥ 𝑓𝑎𝑖 − 𝑓𝑛𝑖 ∥22 +𝑚, 0) (2)
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is used to minimize reconstruction errors while optimizing the
distance of features, enhancing feature discrimination between
malicious and benign apps. For the MSE loss, 𝑁 is the number
of training samples, 𝑓𝑖 and 𝑓𝑖 are the original input features and
the reconstructed features, respectively. For the triplet loss, 𝑎𝑖 , 𝑝𝑖 ,
and 𝑛𝑖 denote the 𝑖-th anchor, positive, and negative sample, re-
spectively. After training, late fusion is applied to combine the
compressed features from the different detection methods. This ap-
proach compensates for weaknesses in any single detection method,
and enhances malware detection performance. The fused features
are then stored in a knowledge base for future detection tasks.

2.3 Agile Knowledge Update
LLMalware introduces an agile knowledge update to tackle the
rapidly evolving nature of Android malware, enabling frequent up-
dates with minimal overhead. The system builds a feature-centric
knowledge base that stores fused features and corresponding la-
bels, acting as external memory for an LLM-based agent. The agent
automatically uses a multi-metric search strategy to retrieve the
most similar features from the knowledge base, improving detec-
tion without frequent model retraining. This allows for on-demand
knowledge evolution, where the agent progressively incorporates
new malware data, enhancing the detection performance of previ-
ously unseen threats. Specifically, the knowledge base is initialized
with fused features from known apps and can be dynamically up-
dated with new samples, enabling continuous malware detection
evolution. To mitigate the issues of varying representation quality,
the agent employs a multi-metric search using cosine similarity,
Manhattan distance, and Euclidean distance to improve retrieval
accuracy. A majority voting mechanism determines the final label
based on the retrieved feature labels and returns to the agent, ensur-
ing robust classification. The system selects the top 𝐾 new samples
with lower similarity features to update the knowledge base.

3 IMPLEMENTATION & EVALUATION
3.1 Experimental Setup
We implement LLMalware using the PyTorch 2.3.0 framework. We
test LLMalware on a dataset that includes over 130,000 apps from the
past six years. GPT-4 is selected to evaluate the impact on the per-
formance of LLMalware. We compare LLMalware with 6 baselines,
including Drebin [3], MamaDroid [6], Malscan [7], Transcendent
[4], CL [5], AppPoet [8].

Overall performance. We evaluate the performance of LLMal-
ware across different periods and measure the F1-score and BER
cumulative gap of different malware detection methods, denoted
as 𝐶𝐺𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 (𝑡) =

∑𝑡
𝑖=1 (𝐹𝐿𝐿𝑀𝑎𝑙𝑤𝑎𝑟𝑒 (𝑖) − 𝐹𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 (𝑖)), where

𝐹𝐿𝐿𝑀𝑎𝑙𝑤𝑎𝑟𝑒 (𝑖) and 𝐹𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 (𝑖) are the F1-score of LLMalware and
baselines. Specifically, we use data collected in Year 0 as the training
set and data in Year 1 - Year 5 as the test set. The test set is divided
into multiple subsets by months to assess the influence on the
performance over different periods. The results are shown in Fig-
ure 4. As shown in Figure 4(a), the cumulative gaps of baselines like
Drebin and MaMaDroid increase to 54% and 76%, while the SOTA
baselines, including Transcendent, CL, and AppPoet, reach gaps of
around 20%, indicating a significant model deterioration compared
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Figure 4: The overall performance of LLMalware and the
baselines over time.
to LLMalware. By Year 5, the gaps of Transcendent, CL, and App-
Poet further expand to around 210%, highlighting their declining
robustness and the model aging problem over time. Moreover, as
shown in Figure 4(b), the BER cumulative gaps of all baselines in-
crease. For example, the gaps of baselines such as MaMaDroid and
CL increase from 70% and 20% in Year 0 to 230% and 79% in Year 5,
indicating significant misclassification.

4 CONCLUSION AND FUTUREWORK
We propose LLMalware, an LLM-powered robust and efficient An-
droid malware detection framework against the concept drift prob-
lem. The key insight of LLMalware is to fully exploit the orthogonal
detection capabilities of diverse detection methods. To achieve this,
LLMalware develops and incorporates three key technical com-
ponents: 1○ full-spectrum automated feature extraction to extract
static and dynamic features, 2○ cohesive feature fusion to construc-
tively integrate features of distinct detection methods, and 3○ agile
knowledge update for malware detection to continuously update the
knowledge of LLM for unseen app detection. Experimental results
demonstrate the effectiveness of the proposed feature extraction
and fusion approach. Such technical components jointly help miti-
gate the urgent issue of concept drift in malware detection. In the
future, we aim to realize finer-grained malware family classification
such that defenders can process the malware strategically.
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