
IoTCoder: A Copilot for IoT Application Development
Leming Shen, Yuanqing Zheng

The Hong Kong Polytechnic University, Hong Kong SAR, China
leming.shen@connect.polyu.hk,csyqzheng@comp.polyu.edu.hk,

ABSTRACT
Existing code Large Language Models are primarily designed
for generating simple and general algorithms but are not
dedicated to IoT applications. To fill this gap, we present
IoTCoder, a coding copilot specifically designed to synthesize
programs for IoT application development. IoTCoder fea-
tures three locally deployed small language models (SLMs):
a Task Decomposition SLM that decomposes a complex IoT
application into multiple tasks with detailed descriptions, a
Requirement Transformation SLM that converts the decom-
posed tasks described in natural language to well-structured
specifications, and a Modularized Code Generation SLM that
generates modularized code based on the task specifications.
Experiment results show that IoTCoder can synthesize pro-
grams adoptingmore IoT-specific algorithms and outperform
state-of-the-art code LLMs in terms of both task accuracy
(by more than 24.2% on average) and memory usage (by less
than 358.4 MB on average).

CCS CONCEPTS
• Computing methodologies → Artificial intelligence.

KEYWORDS
Large Language Models, IoT Applications
ACM Reference Format:
Leming Shen, Yuanqing Zheng. 2024. IoTCoder: A Copilot for IoT
Application Development. In The 30th Annual International Con-
ference On Mobile Computing And Networking (ACM MobiCom ’24),
November 18–22, 2024, Washington D.C., DC, USA. ACM, New York,
NY, USA, 3 pages. https://doi.org/10.1145/3636534.3697447
1 INTRODUCTION
Large language models (LLMs) have changed our daily lives
in various aspects, such as task automation and IoT data inter-
pretation [1]. Code LLMs (e.g., CodeLlama [2]) are promising
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
ACM MobiCom ’24, November 18–22, 2024, Washington D.C., DC, USA
© 2024 Association for Computing Machinery.
ACM ISBN 979-8-4007-0489-5/24/11. . . $15.00
https://doi.org/10.1145/3636534.3697447

implement a quick sort algorithm
def quick_sort(arr):

 if len(arr) <= 1:
 return arr
 pivot = arr[len(arr) // 2]
 left = [x for x in arr if x < pivot]
 middle = [x for x in arr if x == pivot]
 right = [x for x in arr if x > pivot]
 return quick_sort(left) + middle +
quick_sort(right)

GitHub Copilot

Comments: {}
Preceding Code: {}

Now, generate code
segments for the user

Figure 1: Code LLMs and copilot.

tools designed to generate code according to user require-
ments described in natural language. By integrating code
LLMs with coding tools, they serve as copilots that signifi-
cantly improve software development by automating code
generation, bug detection, and documentation tasks (Fig. 1).
Existing code LLMs are mainly designed for general-

purpose coding, i.e., generating a single module or function
based on well-defined specifications. When confronted with
IoT applications that require specific domain knowledge,
they tend to provide general solutions with sub-optimal per-
formance rather than dedicated algorithms tailored for IoT.
The reason is that IoT domain knowledge only occupies a
small proportion of the training dataset of code LLMs. This
observation motivates the following research question: Can
we build a code LLM tailored for IoT application development?
Constructing an IoT code LLM can improve user experiences
with enhanced efficiency in IoT application development.

A potential solution is equipping LLMs with Retrieval-
Augmented Generation (RAG). By providing LLMs with re-
trieved IoT domain knowledge, the generated codemay adopt
algorithms more relevant to the IoT domain. However, such
methods suffer from three main problems. 1) Extensive hu-
man effort must be invested in the RAG design to ensure the
correctness and high relevance of the retrieved knowledge.
2) Meticulously designed prompts are demanded to ensure
that the output strictly follows pre-defined formats, which is
extremely challenging due to hallucinations and unreliability
[3]. 3) Even armed with specially designed RAG, the LLM still
requires strong language understanding capability to learn
from the retrieved contents, demanding a powerful LLM.
However, cloud LLMs (e.g., GPT-4) often suffer from long
latency, high cost, and privacy concerns, while local LLMs
(e.g., CodeLlama) have harsh system resource requirements.

To tackle these problems, we propose IoTCoder, a copilot
tailored for IoT application development by fine-tuning lo-
cal SLMs on IoT-specific datasets. Specifically, the tuning
process can embed IoT domain knowledge into the tuned

https://doi.org/10.1145/3636534.3697447
https://doi.org/10.1145/3636534.3697447

ACM MobiCom ’24, November 18–22, 2024, Washington D.C., DC, USA Leming Shen, Yuanqing Zheng

Task Decomposition SLM
Requirement

Transformation SLM
Modularized Code

Generation SLM

Papers Reformat &
Augment

Dataset for
Task Decomposition

SLM

Instruction Tuning

User Input

Develop a HAR
system via ……

LoRA
Prompt 1

Prompt 2

Decomposed Task
Specifications

…………

Prompt n
Webpages & CodeReformat

Instruction Tuning
LoRA

Dataset for
Code Generation

Final Code

Execute the
following code
one by one …

System
You are a professional and
skillful Python programmer.
Write some code based on
the user instruction ……

User
Target
{task_target}

Input Specifications
{Input Specifications}

Output specifications
{Output Specifications}

Figure 2: The system overview and workflow of IoTCoder.
model by steering the parameter distributions toward IoT-
relevant context. As such, the SLM will provide solutions
adopting more IoT-specific algorithms to solve users’ prob-
lems, thereby enhancing task accuracy and relevance in the
IoT domain. We can also improve the reliability of producing
outputs following specified formats. By locally deploying
the tuned SLMs with smaller model sizes, the privacy and
latency concerns will be mitigated. As shown in Fig. 2, given
an IoT programming task, the Task Decomposition SLM first
breaks it into multiple tasks with descriptions. Next, the
Requirement Transformation SLM converts the decomposed
tasks described in natural language into well-structured task
specifications. Accordingly, the Modularized Code Genera-
tion SLM generates a list of modularized codes with detailed
documentation. Note that the task decomposition and code
generation processes are based on two tuned local SLMs on
our manually collected datasets tailored for the IoT domain.
2 SYSTEM DESIGN
2.1 Task Decomposition SLM
Following the software life cycle, we deploy an SLM to de-
compose the complex IoT application into multiple tasks.
Dataset Construction & Augmentation. IoT-related

research papers contain high-quality algorithms and
paradigms for IoT applications. Thus, we first download some
papers as high-quality data sources, covering a wide range
of IoT topics (e.g., communication, wireless sensing, edge
computing, etc). Next, we build an RAG agent by integrating
GPT-4o with the papers. Then, for each technical module
proposed in the paper, we instruct the agent to generate a
list of implementation descriptions via specially designed
prompts. Furthering this, we design an IoT-specific text data
augmentation method to enhance the quantity, diversity, and
creativity of the original data. Our augmentation considers:
1) For the same IoT task, we can use different sensor data
modalities. For example, to perform human activity recog-
nition (HAR), we can use IMU data, Wi-Fi CSI, etc. 2) For
the same sensor modality, we can leverage distinct repre-
sentations of the data. For instance, we can use Wi-Fi CSI,
spectrograms, or Doppler features to implement HAR. 3)
For the same task, different target platforms have various

resource budgets (e.g., memory). After augmentation, we
obtain 39,000 "user requirement - decomposed task list" pairs
in total. Note that this augmentation method considers the
diversity of both language expression and IoT characteristics.
Instruction Tuning. We use Llama2-13b [4] as the lo-

cal SLM and adopt supervised fine-tuning via LoRA. After
several epochs of tuning, we can effectively transform the
general model into a dedicated SLM tailored for IoT task de-
composition. The tuned model can generate a list of decom-
posed tasks with descriptions following user instructions.

2.2 Modularized Code Generation SLM
We deploy a fine-tuned SLM to generate multiple code snip-
pets for each decomposed task. By sequentially executing
the generated code snippets, the complex IoT task can be
solved via such a divide-and-conquer manner.
Dataset Construction. Open-source Python packages

contain abundant hand-crafted algorithms with high per-
formance for IoT tasks. Therefore, we select some Python
packages as our data source, covering areas including sig-
nal processing, machine learning, and data visualization.
We build a web crawler to automatically retrieve informa-
tion from the package’s official website and formulate three
types of code generation tasks. 1) Module description. We
format the user instruction to "Provide a detailed descrip-
tion of the <module_name> from a Python package named
<package_name> to <target>." The corresponding reply
contains comprehensive information of the module, includ-
ing its prototype, description, specification, tips, and sample
code. This aims to make the SLM familiar with the module by
enhancing the correlation between user instruction and the
sample code. 2) Module implementation. We format the user
instruction to "Write some Python code with comments and
documentation to <target> by using the <module_name>
from a Python package named <package_name>." The corre-
sponding reply includes the sample codewith documentation
with detailed information, including the workflow and guid-
ance on how to execute the code. This aims to enhance the
instruction-following capability of the SLM to generate code
and documentation according to the specification. 3) Exam-
ple implementation. We organize the user instruction to a

IoTCoder: A Copilot for IoT Application Development ACM MobiCom ’24, November 18–22, 2024, Washington D.C., DC, USA

well-structured format, including the task target and the I/O
specifications for the expected code. This aims to enhance
the code generation capability of the SLM in following the
well-structured task specifications. Ultimately, by concate-
nating and mixing all three types of code generation tasks,
we obtain 35,339 "task specification - code & documentation"
pairs in total for fine-tuning.

Instruction Tuning. After several epochs of fine-tuning
via LoRA, the SLM can generate IoT-specific code following
the user specifications. Further experiments reveal that our
Modularized Code Generation SLM can synthesize more IoT-
specific programs with better performance. Note that the
code generation SLM shares the same foundation model
(i.e., Llama2-13b) with the Task Decomposition SLM without
incurring significant resource overhead.

2.3 Requirement Transformation SLM
There exists a huge gap between the descriptions of the
decomposed tasks and the expected inputs for the code gen-
eration SLM. The main reason is that the decomposed tasks
are described in natural language, while the expected inputs
for the code generation SLM should be well-structured spec-
ifications. Directly inputting the descriptions of decomposed
tasks into the tuned code generation SLM cannot generate
solutions with high performance. Therefore, we design a Re-
quirement Transformation SLM to fill this gap. Specifically, we
design a chain of prompts that guide the SLM to convert the
task descriptions into well-structured specifications step by
step. This leverages the basic language processing capability
of the SLM and, therefore, does not require fine-tuning.
3 IMPLEMENTATION & EVALUATION
We implement and deploy IoTCoder on an edge server with
an NVIDIA RTX 4090 GPU. For instruction tuning, we use a
cloud server with an NVIDIA RTX A800 GPU.
Overall Performance. We select Wi-Fi-based HAR on

the XRF55 dataset [5] as a representative IoT application [6].
From Fig. 3(a) we can see that the programs synthesized by
IoTCoder achieve better performance than the baselines (GPT-
4o, CodeLlama-34b, and GitHub Copilot) in terms of task
accuracy (recognition accuracy) and system overhead (GPU
memory usage). This observation indicates that by tuning
local SLM on IoT-specific datasets, the synthesized programs
can outperform SOTA code LLMs and even achieve similar
performance to hand-crafted algorithms! This is because the
programs synthesized by IoTCoder adopt more dedicated
algorithms for IoT data processing and model optimization.
Code Generation Capability.We manually establish a

benchmark specifically designed to evaluate the code genera-
tion capability for IoT applications. The IoT benchmark con-
tains 100 IoT applications described in natural language with
several test cases. Fig. 3(b) shows the average Pass@k values
of IoTCoder and baselines, where a higher value indicates

IC G4 CL GC HA
Code LLMs and HA

50

60

70

80

90

Ta
sk

 A
cc

ur
ac

y
(%

)

0.1

0.3

0.5

0.7

0.9

G
PU

 M
em

or
y

U
sa

ge
 (G

B
)

Accuracy
Memory

(a) Overall performance

IC G4 CL GC
Code LLMs

35

50

64

80

95

Pa
ss

@
k

(%
)

Pass@1
Pass@5
Pass@10

(b) Code generation capability
Figure 3: Evaluation results (IC for IoTCoder, G4 for
GPT-4o, CL for Code Llama, GC for GitHub Copilot,
and HA for the hand-crafted algorithm).
a stronger code generation capability for IoT applications.
We can see that the programs synthesized by IoTCoder even
outperform GPT-4o in some cases. The performance gain
stems from the embedded IoT domain knowledge during
instruction tuning, ensuring that the tuned model assigns
a higher probability to IoT-related corpus data and thereby
generates IoT-specific solutions for the user.

4 CONCLUSION AND FUTUREWORK
We present IoTCoder, a tailored programming copilot that can
synthesize programs with documentation according to the
user requirements for IoT application development. IoTCoder
features three locally deployed SLMs responsible for distinct
tasks, i.e., task decomposition, requirement transformation,
and modularized code generation. Experiments demonstrate
the effectiveness and prior performance of IoTCoder com-
pared with SOTA code LLMs and GitHub Copilot.
The effectiveness of IoTCoder relies on the quality of the

training data. Insufficient or biased data can lead to sub-
optimal performance. Besides, IoT technologies are emerging
rapidly, requiring an evolving IoTCoder that continuously
learns new domain knowledge. Therefore, ensuring the qual-
ity and diversity of the datasets while keeping them up-to-
date is crucial. We plan to design an IoT-specific data quality
enhancement approach with continuous learning to improve
IoTCoder’s performance and adaptability.

REFERENCES
[1] H. Xu, L. Han, Q. Yang, M. Li, and M. Srivastava, “Penetrative ai: Making

llms comprehend the physical world,” in ACM HotMobile, 2024.
[2] B. Roziere, J. Gehring, F. Gloeckle, S. Sootla, I. Gat, X. E. Tan, Y. Adi,

J. Liu, T. Remez, J. Rapin, et al., “Code llama: Open foundation models
for code,” arXiv:2308.12950, 2023.

[3] C. Lin, Z. Han, C. Zhang, Y. Yang, F. Yang, C. Chen, and L. Qiu, “Par-
rot: Efficient serving of llm-based applications with semantic variable,”
arXiv:2405.19888, 2024.

[4] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei,
N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale, et al., “Llama 2: Open
foundation and fine-tuned chat models,” arXiv:2307.09288, 2023.

[5] F. Wang, Y. Lv, M. Zhu, H. Ding, and J. Han, “Xrf55: A radio frequency
dataset for human indoor action analysis,” ACM IMWUT, 2024.

[6] L. Shen, Q. Yang, K. Cui, Y. Zheng, X.-Y. Wei, J. Liu, and J. Han, “Fedconv:
A learning-on-model paradigm for heterogeneous federated clients,” in
ACM MobiSys, 2024.

	Abstract
	1 Introduction
	2 System Design
	2.1 Task Decomposition SLM
	2.2 Modularized Code Generation SLM
	2.3 Requirement Transformation SLM

	3 Implementation & Evaluation
	4 Conclusion and Future Work
	References

