
FedDM: Data and Model Heterogeneity-Aware
Federated Learning via Dynamic Weight Sharing

Leming Shen
Department of Computing

The Hong Kong Polytechnic University
Hong Kong SAR, China

leming.shen@connect.polyu.hk

Yuanqing Zheng
Department of Computing

The Hong Kong Polytechnic University
Hong Kong SAR, China

yqzheng@polyu.edu.hk

Abstract—Federated Learning (FL) plays an indispensable
role in edge computing systems. Prevalent FL methods mainly
address challenges involved in heterogeneous data distribution
across devices. Model heterogeneity, however, has seldom been
put under scrutiny. In practice, different devices (e.g., PCs
and smartphones) generally have disparate computation and
communication resources, necessitating neural network models
with varying parameter sizes. Therefore, we propose FedDM,
a novel data and model heterogeneity-aware FL system, which
improves the FL system’s accuracy while reducing edge devices’
computation and communication costs for heterogeneous model
training. FedDM features: 1) dynamic weight sharing scheme that
handles model heterogeneity by dynamically selecting parts of the
large model to share with smaller ones; 2) tree-structured layer-
wise client cooperation scheme that handles data heterogeneity
by allowing clients with similar data distribution to share some
network layers. We implement FedDM and evaluate it using five
public datasets with different tasks.

Index Terms—Federated Learning, Data Heterogeneity, Model
Heterogeneity, Parameter Sharing

I. INTRODUCTION

Federated Learning (FL) is an emerging technology to

collaboratively train a shared model while protecting user

privacy. During model training process, each device only

uploads its local model parameters to the server for aggrega-

tion. In real-world applications, FL faces two challenges: data

heterogeneity and model heterogeneity. Data heterogeneity

refers to the non-independent and identically distributed (non-

IID) data across devices, resulting in significant performance

degradation when applying classic FL scheme [1]. Model

heterogeneity refers to the fact that edge devices usually have

dissimilar computation and communication resources, which

calls for heterogeneous and adaptable models. For example,

PCs can afford models with more weight parameters, while

smartphones or smartwatches may only store simpler models.

Assigning the smallest model to each client will result in sub-

optimal issues [2] as the size of the model is limited by the

device with the least system resources.

To handle data heterogeneity, recent works propose 1)

clustering-based methods [3]–[5] that enhance the cooperation

among clients with similar data distributions; 2) personaliza-

tion algorithms [6]–[9] that train a sub-model or add some

task-specific layers to steer local model toward fitting its

specific data distribution.

For model heterogeneity, existing solutions mainly include

knowledge distillation, parameter pruning, and model weight

sharing. For example, FedDF [10] generates ensemble of

heterogeneous models and generates different smaller mod-

els by knowledge distillation to meet each client’s resource

budget. TailorFL [11] proposes a model pruning-based ap-

proach to support heterogeneous models deployed on resource-

constrained devices. However, replacing aggregation with en-

semble learning or pruning out filters can lead to essential

weight information missing [12], causing unexpected feature

loss and performance degradation. HeteroFL [13] is a weight-

sharing scheme that selects subsets from global model pa-

rameters for devices. However, a critical issue arises because

the unshared part (shown in Fig. 1) of the large models can

only be trained on a small portion of the dataset. These extra

parameters cannot be well combined with other aggregated

parameters, causing the weight unbalancing problem [2].

We propose FedDM, a data and model heterogeneity-

aware FL system. To handle model heterogeneity, we propose

dynamic weight sharing scheme that leverages a varying

shrinkage ratio to generate different sizes of sub-models to fit

each device’s resource budget. To handle data heterogeneity,

the tree-structured layer-wise client cooperation scheme is

proposed to make clients with similar data or model weight

distribution selectively share some network layers.

We face three key technical challenges: 1) How to design

weight sharing scheme without causing the unbalancing prob-

lem. 2) How to orchestrate sub-model aggregation with differ-

ent shapes of parameters. 3) How to make clients cooperate

with each other to selectively share some network layers.

The key contributions of our work can be summarized as

follows: 1) We propose FedDM that uncovers dynamic weight

sharing and client cooperation schemes, handling both data and

model heterogeneity to meet each device’s resource budget

without causing performance degradation and the unbalancing

problem. 2) We exploit dynamic weight sharing scheme to

generate sub-models that dynamically share weights with the

global model accordingly. 3) We devise tree-structured layer-
wise client cooperation scheme that enhances cooperation

among clients based on a refined metric to measure similarity

between clients.

975

2023 IEEE 43rd International Conference on Distributed Computing Systems (ICDCS)

2575-8411/23/$31.00 ©2023 IEEE
DOI 10.1109/ICDCS57875.2023.00093

20
23

 IE
EE

 4
3r

d
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 D
ist

rib
ut

ed
 C

om
pu

tin
g

Sy
st

em
s (

IC
DC

S)
 |

 9
79

-8
-3

50
3-

39
86

-4
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

DC
S5

78
75

.2
02

3.
00

09
3

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on October 15,2023 at 14:59:56 UTC from IEEE Xplore. Restrictions apply.

one PC

large weight medium weight small weight

two phones four watches

aggregate

aggregate

model aggregation

unshared part

cloud server

Fig. 1. The weight sharing scheme of HeteroFL.

1 & 2

Conv1

Conv2

Conv3

FC1

FC2

3 4 5 6 7

Fig. 2. Client cooperation.

(a) Four-corner sharing scheme. (b) Dynamic sharing scheme.

Fig. 3. Different sharing schemes with different shrinkage ratios.

II. METHODOLOGY

A. Dynamic Weight Sharing

The key idea of HeteroFL is that resource-constrained

devices can select subsets of global model parameters based on

a pre-defined shrinkage ratio. For instance, when the shrinkage

ratio is 0.75 and one layer’s weight of the large model has

a shape of (64, 32, 3, 3), the counterpart of a sub-model will

then be (48, 24, 3, 3). In HeteroFL, the shared part is fixed. As

illustrated in Fig. 1, the unshared part of the global model is

only aggregated by PCs, thus cannot see data on other devices,

causing the unbalancing problem.

Thus, to design a more balanced sharing scheme, one natural

solution is to allow smaller weight parameters to iteratively

switch among the four corners as shown in Fig. 3 (a). There-

fore, each corner in the global model has the opportunity to

be shared with smaller models. Hence it mitigates the problem

of parameter imbalance to some extent. However, we observe

that when the shrinkage ratio is high, the central part of the

large model’s parameter will still be shared multiple times,

causing unbalanced aggregation similar to that in HeteroFL

i.e., the first challenge).

Therefore, we adopt a different weight-sharing scheme, i.e.,

dynamic parameter sharing based on the server’s configuration

in each global communication round. Specifically, the server’s

configuration contains three key hyper-parameters, i.e., shrink-

age ratio, row index, column index. The shrinkage ratio for

each client depends on the client’s system resource budget and

thus is fixed (e.g., 0.5 for smartwatches, 0.75 for smartphones).

The row index and the column index refer to the position of

the upper-left value of the smaller weight matrix within the

large matrix. In HeteroFL, both the row index and the column

index are 0, referring to the upper left value of the large weight

parameter. We will design a specific rule to assist the server

in determining these hyper-parameters, considering both client

performance and weight aggregation balancing. To address the

second challenge, only the intersected parameters across the

sub-models are aggregated while keeping the non-intersected

parameters unchanged.

B. Tree-Structured Layer-Wise Client Cooperation

In order to address the third challenge, we decide to

enhance the cooperation among clients that share higher

similarities in data and model weight distribution. As men-

tioned in [8], the Kullback-Leibler Divergence (KLD) is used

to measure the similarity between two distributions. Hence,

we define the similarity between the i-th and j-th client

as: Si,j = KLD(xi, xj) + λ · KLD(Φ(wi, xi),Φ(wj , xj))
where KLD(x, y) is the KLD value of two distributions,

and Φ(wi, xi) is the pre-softmax output of the model with

parameter matrix wi and input local data xi. λ is a hyper-

parameter that balances the impact between data and model

weight distribution on the client cooperation scheme. Clients

with higher similarities can share some layers (as illustrated

in Fig. 2) to collaboratively train the layers while reducing

communication costs. We will leave the details of sharing

scheme implementation as our future works.

III. FUTURE WORKS

Based on the aforementioned methodology, our future works

contain three steps: 1) In order to steer the client training

process, we will study how to meticulously refine the server’s

configuration. 2) To better illustrate the similarity among

clients, we plan provide a detailed client cooperation scheme.

3) We will also carry out extensive experiments (e.g., case

study, ablation study) to evaluate of our proposed system

compared with the state-of-the-art baselines.

REFERENCES

[1] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in AISTATS, 2017.

[2] R. Dai, L. Shen, F. He, X. Tian, and D. Tao, “Dispfl: Towards
communication-efficient personalized federated learning via decentral-
ized sparse training,” in ICML, 2022.

[3] X. Ouyang, Z. Xie, J. Zhou, J. Huang, and G. Xing, “Clusterfl: a
similarity-aware federated learning system for human activity recogni-
tion,” in ACM MobiCom, 2021.

[4] G. Long, M. Xie, T. Shen, T. Zhou, X. Wang, and J. Jiang, “Multi-center
federated learning: clients clustering for better personalization,” World
Wide Web (WWW), vol. 26, no. 1, pp. 481–500, 2023.

[5] A. Ghosh, J. Chung, D. Yin, and K. Ramchandran, “An efficient
framework for clustered federated learning,” in NeurIPS, 2020.

[6] A. Li, J. Sun, X. Zeng, M. Zhang, H. Li, and Y. Chen, “Fedmask:
Joint computation and communication-efficient personalized federated
learning via heterogeneous masking,” in ACM SenSys, 2021.

[7] A. Li, J. Sun, P. Li, Y. Pu, H. Li, and Y. Chen, “Hermes: an efficient
federated learning framework for heterogeneous mobile clients,” in ACM
MobiCom, 2021.

[8] L. Tu, X. Ouyang, J. Zhou, Y. He, and G. Xing, “Feddl: Federated
learning via dynamic layer sharing for human activity recognition,” in
ACM SenSys, 2021.

[9] C. Li, X. Zeng, M. Zhang, and Z. Cao, “Pyramidfl: a fine-grained client
selection framework for efficient federated learning,” in ACM MobiCom,
2022.

[10] T. Lin, L. Kong, S. U. Stich, and M. Jaggi, “Ensemble distillation for
robust model fusion in federated learning,” in NeurIPS, 2020.

[11] Y. Deng, W. Chen, J. Ren, F. Lyu, Y. Liu, Y. Liu, and Y. Zhang,
“Tailorfl: Dual-personalized federated learning under system and data
heterogeneity,” in ACM SenSys, 2022.

[12] Y. J. Cho, J. Wang, T. Chirvolu, and G. Joshi, “Communication-efficient
and model-heterogeneous personalized federated learning via clustered
knowledge transfer,” IEEE J. Sel. Top. Signal Process., 2023.

[13] E. Diao, J. Ding, and V. Tarokh, “Heterofl: Computation and communi-
cation efficient federated learning for heterogeneous clients,” in ICLR,
2021.

976

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on October 15,2023 at 14:59:56 UTC from IEEE Xplore. Restrictions apply.

