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Abstract—The integration of Large Language Models (LLMs)
fosters Embodied AI (EAI) agents to perceive and interact
with the physical world through natural language instructions.
However, existing EAI agents typically operate within fixed
agentic workflows and predefined design spaces, struggling to
handle rapidly evolving real-world EAI scenarios (e.g., diverse
task pipelines, dynamic environments). Unlike prior systems that
treat LLMs mainly as text-generators following rigid workflows,
we fully exploit their reasoning capabilities to allow agents to
determine their own workflows on the fly. To this end, we propose
FSEAI that encourages EAI agents to self-explore and self-evolve
via federated collaboration across heterogeneous environments.
Inspired by human learning processes, we distill EAI tasks into
three atomic operations (observe, reason, act), and empower
agents to explore workflows by dynamically and adaptively
selecting an appropriate next operation based on the current
state. Our evaluations show that, with federated collaboration,
our FSEAI agents can achieve up to a 42.6% higher task success
rate and a 41.6K token cost reduction than state-of-the-art
(SOTA) baselines, while maintaining adaptability to unforeseen
EAI scenarios. This highlights the potential of reasoning-driven
adaptive agentic workflow towards cognitive EAI.

Index Terms—Embodied AI, LLM, Federated Learning

I. INTRODUCTION

Embodied AI (EAI) has emerged as a prominent paradigm
where AI agents are physically situated in and interact with
the real world through sensors and actuators [1]. Armed with
diverse sensors [2], control policies [3], and AI models [4],
EAI agents can automate perception, reasoning, and robotic
control with minimal human intervention. Furthermore, recent
advances in LLMs empower EAI agents with enhanced se-
mantic understanding, high-level reasoning, and flexible task
planning abilities, thereby facilitating more natural and gener-
alizable interactions with complex real-world environments.

Fig. 1 (left) shows the general workflow of EAI agents. 1)
Environment Comprehension. The agent encodes multimodal
sensor data into LLM-interpretable embeddings or textual rep-
resentations that capture environmental semantics, enabling the
LLM to infer spatial relations. 2) High-Level Task Decomposi-
tion: Based on the user-specified EAI task and current environ-
ment semantics, the agent decomposes the task into multiple
manageable subtasks. 3) Low-Level Action Execution: For each
subtask, the agent invokes various actuators (e.g., robot arms)
to execute different actions (e.g., grabbing objects). As such,
EAI agents can understand complex instructions and reason
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Fig. 1. Previous works handcrafted fixed agentic workflows to perform
EAI tasks. FSEAI leverages LLMs’ reasoning capabilities to autonomously
explore and select the next atomic operation to handle diverse EAI tasks.

over multimodal inputs by combining LLM-driven reasoning
with sensory-grounded interaction.

Nevertheless, most existing EAI agentic systems rely on
predefined, fixed agentic workflows, often struggling to handle
diverse EAI tasks in dynamic real-world scenarios. In practice,
EAI tasks span various embodiments, heterogeneous operation
environments, and dynamic runtime constraints. As a result,
even well-engineered EAI agentic systems may struggle to
accommodate such variability, suffering from inflexibility,
limited adaptability, and high maintenance costs (§ II-B).

The root cause is that fixed workflows are often constrained
by the specific assumptions and development experiences of
workflow designers. Developers must explicitly enumerate
workflow steps by handcrafting detailed prompts and tool
usage rules to regulate agent actions for each. As a result,
LLMs solely function as text-generators following predefined
instruction flows. Yet, a key strength of LLMs remains under-
explored: their reasoning capabilities, i.e., the ability to make
decisions in response to dynamic context information. This
gap motivates a key research question: Can we harness LLMs’
reasoning capabilities to autonomously construct adaptive
workflows to accommodate dynamic and ever-changing EAI
environments? If successful, we could shift the burden of
workflow design from developers to EAI agents themselves,
fostering more flexible, adaptive, and scalable EAI systems.

To this end, we propose FSEAI, a federated EAI paradigm
that leverages LLMs’ reasoning capabilities to autonomously
and adaptively construct distinct workflows via federated col-
laboration [5]. The core insight is derived from human learning
processes, which involve iterative knowledge acquisition, rea-
soning, practice, and reflection on accumulated experiences.
Likewise, a FSEAI agent explores its workflow and evolves
through iterations of self-exploration and reflection. Building



upon this vision, we distill EAI tasks into three atomic
operations (observe, reason, act), which serve as meta
building blocks of EAI agentic workflows (Fig. 1 right).
The FSEAI agent autonomously selects the next appropriate
meta operation based on its reasoning about the accumulated
context, thereby flexibly adapting to diverse EAI scenarios.
In addition, our FSEAI agent evolves through self-reflection,
rather than blindly adhering to rigid workflows. Finally, we
exploit federated learning [6] to collaboratively and continu-
ously fine-tune multiple EAI agents for robust performance.

We validate and test FSEAI on an EAI simulator, i.e., Virtu-
alHome [7], which emulates 7 distinct household environments
containing a large number of interactive objects. We compare
FSEAI with 3 baseline EAI agents across 4 representative EAI
tasks: environment Q&A, grabbing objects, placing objects,
and hybrid tasks. Evaluation results demonstrate that FSEAI
outperforms the baselines in terms of both task success rate
(42.6% ↑), total token cost (41.6K ↓), and robust generalizabil-
ity across tasks. These results validate the effectiveness of our
reasoning-driven adaptive workflow construction paradigm. In
summary, we make the following contributions:
• FSEAI exploits LLMs’ reasoning abilities to autonomously

construct agentic workflows via self-exploration and feder-
ated tuning, addressing the limitations of fixed workflows
in heterogeneous and evolving EAI environments.

• We implement and evaluate FSEAI against 3 recent EAI
agents, demonstrating its superior accuracy and generaliz-
ability. We also share actionable insights (§ IV) for design-
ing future cognitive EAI agents in dynamic environments.

II. BACKGROUND & MOTIVATION

A. LLM & Embodied AI Agents
LLMs exhibit remarkable language generation and reason-

ing abilities [8], [9], [10]. By equipping LLMs with external
tools (e.g., search engines, databases), we can build agents
and design agentic workflows guiding them to automatically
solve complex tasks such as robotic manipulation. To pursue
general intelligence, existing studies integrate LLMs into EAI
agents as a central ”brain” to enable more advanced environ-
ment comprehension, task reasoning, and robotic control. For
example, CaP [3] leverages LLMs to generate programs to
comprehend EAI environments and perform robotic manip-
ulation. Moreover, SELU [11] further enhances EAI agents’
reasoning capabilities through reinforcement learning.

B. Preliminary Study
While promising, most existing EAI agents rely on fixed

agentic workflows that are often bound by developers’ experi-
ences, thus struggling to handle heterogeneous EAI tasks and
exhibiting inflexibility, limited adaptability, and high mainte-
nance costs. To better understand these limitations, we conduct
a preliminary study by reproducing three recent EAI agents:
Cap [3], SELU [11], and LLM-MCTS [12]. We evaluate their
performance in a household simulator, VirtualHome [7], using
a dataset [11] spanning across diverse EAI tasks. To simulate
dynamic real-world home scenarios, we randomly make some
objects keep moving during baseline execution.

(a) Existing EAI agents often fail to
handle dynamic environments

(b) Though feasible, most EAI tasks
can not be successfully completed

Fig. 2. Preliminary & feasibility study.

As shown in Fig. 2(a), only 34.6% of the EAI tasks can be
executed without errors, while only 12% completely satisfy
task requirements. It is highly challenging to design a
one-size-fits-all workflow to adapt to dynamic, unforeseen
EAI environments and tasks. Further inspection reveals two
heterogeneous issues of the three EAI agents:
• No handling of dynamic environments. Built upon a prede-

fined sense-plan-act workflow, they assume static household
layouts and reliable localization. Thus, when the environ-
ment changes or contains moving obstacles, fixed workflows
break down: the sensing module overlooks such variations,
causing the planning module to generate unexecutable de-
cisions (e.g., moving while ignoring dynamic obstacles).

• Poor scalability to long-horizon tasks. When given a long-
horizon task such as ”tidy up the apartment and prepare it
for guests”, the agent must coordinate dozens of subtasks,
including searching for objects across rooms, deciding what
constitutes ”tidy”, handling dependencies (e.g., clearing
tables before placing items), and revisiting rooms as the
environment changes. Predefined workflows typically rely
on bounded planning horizons or static subgoal templates,
causing planning complexity to grow rapidly and leading to
brittle behavior, repeated actions, or premature termination.

To remedy the above as well as other unpredictable failures,
developers must repeatedly revise and refine the workflows by
explicitly listing detailed regulations, such as tool usage rules,
edge-case handling advice, and consistency checks. Maintain-
ing such handcrafted rules for unexpected cases with diverse
requirements becomes highly time-consuming and error-prone.

C. Motivation
To overcome the above limitations, we propose FSEAI, a

federated EAI agentic paradigm. Rather than treating embod-
ied LLMs merely as text-generators, FSEAI fully exploits
their reasoning capabilities to dynamically and autonomously
optimize and adjust workflows in response to ever-changing
environments. Inspired by human learning processes, we ana-
lyze over 30 EAI agentic systems and find that nearly all EAI
workflows are composed of three atomic agentic operations:
• observe: An agent observes its current surroundings by

capturing and analyzing various multimodal sensor data.
• reason: An agent analyzes the current and past state based

on the available information and makes inferences before
selecting the next operation. This operation relies on the
agent’s reasoning capabilities for decision-making.

• act: An agent executes actions (e.g., moving forward, grab-
bing objects) in the environment to change its perspective
for further observation or to accomplish the EAI task.
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Fig. 3. The overall architecture and workflow of FSEAI (with detailed operations in step 3)

By enabling EAI agents to autonomously select among these
operations in response to changing states, agentic workflows
can be organically constructed. Similar to next token pre-
diction in LLMs, FSEAI instead predicts the next atomic
operation that drives the workflow forward.

III. DESIGN OF FSEAI

A. System Overview
FSEAI exploits LLMs’ reasoning abilities to adaptively

construct agentic workflows, meanwhile facilitating collabora-
tion among federated EAI agents for continuous enhancement.
Fig. 3 illustrates the overview of our proposed FSEAI, con-
sisting of two technical modules: a hierarchical coordinator-
executor agentic architecture for self-exploration (§ III-B) and
continuous federated tuning for self-evolution (§ III-C).

B. Self-Exploration
This module exploits LLMs’ reasoning capabilities to dy-

namically construct workflows for diverse EAI tasks.
Challenge. To realize self-exploration, an intuitive method is
to construct a single EAI agent and guide it to iteratively select
appropriate atomic operations. However, we find it inefficient
and impractical to rely on a single agent to perform all the
atomic operations due to the limited long-context reasoning
abilities of current LLMs, even if they have large context
windows [13]. We conduct a feasibility study where a single
EAI agent is instructed to complete 100 different EAI tasks in
VirtualHome. As shown in Fig. 2(a), only 9% of the tasks can
be finished, while 35% fail and repeatedly execute the same
action (e.g., keep moving forward). This phenomenon exacer-
bates when embodied LLMs directly take multiple sensor data
as inputs. This is because the agent accumulates increasingly
long contexts, while LLMs inherently pay more attention to
the earliest and most recent tokens in the context window,
causing the agent to forget previously executed steps.
Solution. We design a coordinator-executor agentic architec-
ture (Fig. 3 left), where a coordinator agent maintains a global
view and autonomously orchestrates three task-specific atomic
agents: observer, reasoner, and actor. Given an EAI task (❶),
the coordinator iteratively determines the next appropriate
operation. At each step, the coordinator will analyze the
output from the previous operation (❷) using a step transition
prompt, and generate the next atomic operation with detailed
instructions (❸). The corresponding atomic agent is activated
(❹) to execute the operation based on the instruction and

generate an output (❺). The output is further sent to the
coordinator (❻). Based on the currently constructed workflow,
the coordinator decides if extra operations are required (❼) or
concludes that the user’s EAI task is completed with expected
results (❽). In addition, FSEAI provides an interface for
users to offer specific instructions for workflow refinement
(❾). Such modular division of cognitive tasks effectively
reduces reasoning complexity over long contexts and fosters
interpretable and traceable decision-making. Note that the
agents communicate with each other and with external tools
via tailored HTTP and MCP interfaces, respectively. We design
tailored prompts to regulate each agent’s behavior and outputs.
Coordinator Prompt (P.1) includes five parts:
• Role & objective. We assign the agent a coordinator role

and provide a task description that guides it to proactively
orchestrate multiple agents for EAI tasks.

• Respond rules include detailed descriptions of the three
atomic operations and their selection rules. We task the co-
ordinator with iteratively selecting an appropriate operation
and activating the corresponding atomic agent for execution.
We also introduce a quit operation to terminate the EAI
task if it is completed. Importantly, beyond sticking to the
general loop of ”observe → reason → act”, we encourage
the coordinator to repeat any stage as needed, e.g., ”ob-
serve → reason → observe”. As such, the coordinator can
dynamically explore workflows for various EAI tasks.

• Current state. Atomic agents’ activities are recorded during
operation execution, serving as the current state and thereby
fostering the coordinator to determine the next operation
with enhanced contextual coherence.

• Output specifications. To ensure that atomic agents can
accurately interpret the operation, we stipulate that the
coordinator only outputs three items: the operation name,
a brief instruction, and relevant context information.

• One-shot example for ambiguity reduction.
Atomic Agent Prompt consists of four parts:
• Role & objective. We also assign distinct roles to the atomic

agents, along with descriptions of their jobs.
• Operation execution rules. We encourage each atomic agent

to proactively and repeatedly invoke relevant tools to obtain
sufficient information or conduct thorough tests.

• Output specifications. We stipulate that each atomic agent
can only respond with a function_call with parameters
to invoke a tool, or a message to quit the current operation.



• Instruction & context information from the coordinator.
We instruct atomic agents to invoke multiple tools until all nec-
essary information is gathered. Once a ”finished” message
is generated, the atomic agent’s activity is summarized and
returned to the coordinator for further decision-making.
Remarks. Through our coordinator-actor agentic architec-
ture, the coordinator can autonomously explore appropriate
atomic operations using its reasoning abilities. As such, EAI
workflows can be dynamically constructed to cope with dy-
namic environments with enhanced flexibility and adaptability.

C. Continuous Federated Tuning Paradigm
In the feasibility study (Fig. 2(b)), we also find that 55%

of the tasks adopt overly simple EAI algorithms or outdated
AI models, motivating us to continuously fine-tune embodied
LLMs to enhance their reasoning capabilities in response to
evolving EAI environments and contexts. Specifically, we fo-
cus on two aspects: 1) The coordinator should gain enhanced
cognitive reasoning to autonomously determine the next ap-
propriate atomic operation at each step. 2) Each atomic agent
should execute its operation properly by leveraging its domain-
specific reasoning capabilities to analyze EAI environments
and perform precise manipulation. To achieve these goals,
we adopt modified reinforcement fine-tuning (RFT) [14] to
enhance agents’ reasoning abilities in the EAI domain without
user intervention. Different from supervised fine-tuning, RFT
can enhance LLMs’ reasoning capabilities in specific domains
by tuning on smaller amounts of data [14].
RFT Procedure. Rather than forcing LLMs to generate
precise answers, RFT relies on a grader that scores gener-
ated responses, followed by policy gradients to refine LLM
parameters. RFT mainly consists of three stages: 1) Grader
design. A grader is created to score the quality of LLM
outputs. Generally, graders can take various forms, such as
format checkers, Python code, or even LLMs [14]. 2) Tuning
dataset construction. We first prepare a question set, Q, with
an expected answer set, Ae, and input Q into the LLM, L, to
obtain a generated answer set, Ag . Accordingly, we prompt the
grader, G, to score each answer. The tuning dataset, T , is thus
obtained as a set of questions, expected answers, generated
answers, and scores, si. The entire process is:

ag
i = L(qi), ∀qi ∈ Q

si = G(qi, ag
i , a

e
i ), ∀ag

i ∈ Ag, ∀ae
i ∈ Ae

T = {(qi, ag
i , a

e
i , si), · · · }

(1)

3) Fine-tuning. With the obtained training dataset, policy-
gradient updates are adopted for LLM tuning:

ĝ =
1

|T |
∑
si∈T

∇θ log si
∣∣
θ
Â, θ′ = θ + η · ĝ (2)

where ĝ is policy gradient, |T | is dataset cardinality, θ are LLM
parameters, Â are advantage estimates, and η is learning rate.
After several epochs, RFT enhances the reasoning capabili-
ties of LLMs by encouraging them to generate high-scoring
outputs more frequently while suppressing low-scoring ones.
Challenge. FSEAI still faces two main challenges: 1) As
agents continuously evolve, it becomes necessary to design
multiple evolving graders to assess both the coordinator and
atomic agents. Manually providing feedback from a global

view demands substantial domain expertise and is highly time-
consuming. 2) A single FSEAI agentic system typically oper-
ates within confined exploration spaces with limited perception
ranges. As a result, a single agent may struggle to generalize
to unseen and heterogeneous environments.
Solution. To address the first challenge, we propose an ensem-
ble mutual-actor-critic strategy (Fig. 3 right) to enhance both
the coordinator and atomic agents in a mutual-critique manner.
Our insight is that both the coordinator and atomic agents
can function as graders to criticize each other’s behaviors
from distinct perspectives. As such, they can progressively
evolve through mutual reflection. To overcome the second
challenge, we further integrate RFT with federated scoring,
enabling multiple distributed embodied LLMs to learn from
one another’s perspectives and decisions.
Ensemble Mutual-Actor-Critic Strategy. We augment the
actor-critic algorithm [15] with an ensemble updating strategy
to refine both the coordinator and atomic agents continuously.
In particular, to update atomic agents, we treat the coordinator
as the critic (i.e., grader) to evaluate atomic agent behaviors.
In turn, to refine the coordinator, we regard atomic agents
as three separate graders, each criticizing the coordinator
from a distinct angle regarding their specific tasks. Thus, both
the coordinator and atomic agents can be mutually updated
as self-exploration progresses. Specifically, we prompt the
coordinator to assign a score reflecting whether each atomic
agent’s response is relevant to the current context and the
overarching EAI task. Tuning atomic agents is expressed as:

ĝ =
1

|Da = {sa1 , sa2 , · · · }|
∑

∇θ log s
a
i

∣∣
θ
Â, θ′ = θ + η · ĝ (3)

where Da contains the scores graded by the coordinator. To
fine-tune the coordinator, we first design three tailored grader
prompts for atomic agents to rate the current atomic operation
and instruction generated by the coordinator. The grading
prompt considers both the correctness and necessity of the
coordinator’s decision. An ensemble score is then calculated
via weighted aggregation, which can be expressed as:

sci =
∑

o∈O wo · ρo, sci ∈ [0, 5]

ρo =

{
soi if the coordinator’s operation = o
5− soi otherwise

(4)

where o is the current operation, wo is its assigned weight,
and soi is the score rated by each atomic agent. If o does not
match the atomic agent’s operation, we compute the score as
5 − soi , as in this case, a higher score means that the atomic
agent considers its own operation to be more appropriate. The
coordinator is then updated using the ensemble score:

ĝ =
1

|Dc = {so1, so2, · · · }|
∑

∇θ log s
o
i

∣∣
θ
Â, θ′ = θ+η · ĝ (5)

Such an ensemble strategy allows bidirectional critique
between the coordinator and atomic agents during self-
exploration, thereby fostering reflection on accumulated con-
text and enabling continuous, iterative self-evolution.
Federated Scoring. In the large environment, there are N
FSEAI agentic systems operating simultaneously. After each
interaction, we record and aggregate the ensemble scores in a
federated manner to foster information sharing among multiple



(a) TSR on environment Q&A tasks (b) TSR on object grabbing tasks (c) TSR on object placing tasks (d) TSR on hybrid tasks
Fig. 4. The overall performance of FSEAI and the baselines across four distinct types of EAI tasks in the VirtualHome environment.

EAI agents. The aggregation process is expressed as:

ŝa =

N∑
j=1

saj /N, ŝo =

N∑
j=1

soj/N (6)

The aggregated scores ŝa and ŝo are further used for RFT.
Remarks. Our tuning paradigm fosters mutual critique be-
tween the coordinator and atomic agents for continual rea-
soning enhancement. Such bidirectional supervision and col-
laborative progress mitigate LLM hallucinations and facilitate
a more robust self-evolution paradigm for adaptive agentic
systems to handle ever-changing EAI environments.

IV. EVALUATION

A. Experiment Setup
Implementation. We fully implement FSEAI using OpenAI’s
o4-mini for balanced reasoning and response latency. We equip
the FSEAI agent with a web search engine, a database,
a Python executor within a sandbox, and a tool builder
that allows the agent to dynamically create new tools. We
carefully design and implement all graders and adopt RFT
following OpenAI’s official guidelines [14]. We test FSEAI
and the baselines in VirtualHome [7], which emulates 7 dis-
tinct household environments with numerous interactive items.
Following [11], we create a test dataset containing 400 EAI
tasks spanning across four types: environment Q&A, grabbing
objects, placing objects, and hybrid tasks. We randomly split
the augmented dataset into two parts: 20% for tuning and 80%
for evaluation (RFT requires less tuning data). The tuning and
testing data have completely different EAI tasks.
Baselines. We compare FSEAI with three SOTA baselines
that rely on developer-predefined agentic workflows:
• Code-as-Policies (CaP) [3] formulates EAI task planning

and robotic manipulation as a coding problem.
• LLM-MCTS [12] builds a world model and adopts Monte

Carlo Tree Search to scale up planning.
• SELU [11] leverages reinforcement learning to enhance

MLLMs’ reasoning capabilities in EAI tasks.
Metrics. For environment Q&A, we compute BERTScore
between the generated responses and the reference answers
to assess token-level similarity. For the other three tasks,
we measure the Task Success Rate (TSR), i.e., the ratio of
tasks that can be successfully executed by the agent without
execution errors. We also record the Total Token Cost (TTC)
of the embodied LLM throughout the entire process.

B. Overall Performance
Fig. 4 illustrates the overall performance of FSEAI and the

baselines across four types of EAI tasks. We find that:

FSEAI can effectively handle diverse EAI tasks in
heterogeneous and dynamic environments. On average,
FSEAI achieves up to a 30% increase in BERTScore, a 42.6%
rise in TSR, and a reduction of 41.6K in TTC. This indicates
that FSEAI has better generalizability than the baselines,
benefiting from our federated EAI agentic paradigm, where
the FSEAI agent is encouraged to dynamically determine the
next appropriate steps and share knowledge with others.

In environment Q&A tasks, baseline EAI agents con-
sume 30.4% fewer tokens than FSEAI. After conducting
a closer examination of the agentic workflows constructed by
FSEAI, we find that FSEAI not only describes the surround-
ings at the agent’s initial position but also proactively controls
the agent to move around and gather more environmental
information. Consequently, FSEAI achieves a substantially
higher BERTScore than the baselines, indicating a certain
degree of self-cognitive capability in aligning agent control
and environmental information with users’ EAI tasks.

In simple robotic manipulation tasks (i.e., grabbing and
placing objects), FSEAI outperforms the baselines in terms
of both TSR and TTC. Specifically, FSEAI achieves a near-
100% TSR and around 15K TTC on average. In contrast,
the baseline agents incur approximately two to three times
higher TTCs. Delving deeper into their intermediate outputs,
we find that in most tasks, the baselines repeatedly execute the
predefined ”observe-plan-act” loop without making substantial
progress towards the task goal, especially in dynamic environ-
ments. For example, an obstacle is moving around when CaP
is navigating toward the target item. As a result, CaP collides
with the obstacle and repeatedly attempts to move forward,
ultimately causing the VirtualHome simulator to crash. On the
contrary, FSEAI promptly adjusted its workflow by dynami-
cally adding additional steps (i.e., observe, reason, and move
away) to effectively handle the environmental changes.

The performance gap expands as EAI tasks are more
complex. As shown in Fig. 4(d), when handling hybrid tasks,
the baselines cost dramatically more tokens (exceeding 60K) to
finish a single task, with LLM-MCTC consuming nearly 100K
tokens. The underlying reason is that hybrid EAI tasks demand
more sophisticated reasoning capabilities and necessitate EAI
agents to interact with environments multiple times. Due
to limited reasoning abilities and a lack of self-awareness,
the baselines tend to explore the environment blindly and
repeatedly execute redundant actions, thereby accumulating
excessive token costs, which in turn exacerbate long-context
reasoning overhead and ultimately result in a vicious cycle.
Remarks. The superior performance and generalizability of
FSEAI stems from its coordinator-executor agentic archi-



Fig. 5. Trajectories of the case study (first-person perspective of the agent in VirtualHome).

tecture for efficient labor division and workflow exploration,
and its tuning paradigm that continuously enhances decision-
making capabilities of EAI agents. More importantly, FSEAI
exhibits flexibility and adaptability in handling diverse EAI
tasks, unforeseen cases, and heterogeneous EAI environments.

C. Case Study

To better illustrate how FSEAI autonomously and dynam-
ically constructs its workflow, we present a frame-by-frame,
first-person perspective of the agent when tasked with ”Put
the soap on the microwave”. Initially, the agent is located near
the kitchen door that connects to the study room. The agent’s
trajectories during self-exploration are shown in Fig. 5.
1) observe I need to capture images to observe the room.
2) reason I cannot find a soap.
3) reason It seems that I’m currently in a kitchen and there

is a study room nearby. Maybe I can first enter the room
to gather additional observations.

4) act Turn left and move forward.
5) observe I need to capture images to observe the room.
6) reason The left side is obstructed by walls; therefore,

turning right may provide a broader perceptual view.
7) act Turn right.
8) observe I should capture images for further observation.
9) reason It seems that there is a bathroom on the right.

The soap is likely to be located in that room.
10) reason Based on my current location, I need to first turn

right and then move forward to enter the bathroom.
11) act Turn right and move forward.
12) observe Capture images for further observation.
13) reason In front of me is a tub, and on the left is a

washbasin. The soap is likely to be located on the basin.
14) reason I need to turn left and move forward.
15) act Turn left and move forward.
16) observe Capture images for further observation.
17) reason Bingo! The soap is right on the basin.
18) reason I can grab the soap and return to the kitchen.
19) act Grab the soap.
20) The agent executes similar operations: navigate back to the

kitchen, find a microwave, and put the soap on it.
Notably, our FSEAI agent even automates the entire process
of ”observation via image capturing → image comprehension”
by proactively generating a Python script to reduce reasoning
overhead, since the agent finds that such combined steps
are executed repeatedly. Moreover, the agent leverages an

external multimodal LLM to interpret the captured images.
Based on these findings, we can see that FSEAI’s behavior
closely resembles humans, exhibiting remarkable adaptability
and consciousness of FSEAI in handling EAI environments.

V. CONCLUSION

We present FSEAI that leverages LLMs’ reasoning capa-
bilities to dynamically construct appropriate workflows for
heterogeneous EAI tasks. With two crafted technical modules,
our evaluations demonstrate the effectiveness, generalizability,
flexibility, and adaptability of FSEAI in handling diverse and
evolving EAI scenarios. Looking ahead, we envision FSEAI
as a stepping stone toward more autonomous agentic systems
capable of not only adapting to dynamic environments but also
evolving through lifelong learning and reflection.
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