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ABSTRACT
Embodied AI (EAI) transforms our daily lives by bridging intelli-
gent agents with various sensors and actuators. Large Language
Models (LLMs) further enhance EAI agents in environment com-
prehension, task decomposition, and action execution for robotic
manipulation. However, developing a general EAI agent capable of
adapting to and continuously learning from diverse operating envi-
ronments is extremely challenging: 1) Robots with mobility capture
environments frommultiple perspectives, leading to heterogeneous
semantic interpretations, particularly in large or open settings. 2)
Heterogeneous environments further exacerbate the variability of
decomposed tasks and corresponding actions required for robotic
manipulation. To address these challenges, we propose FEAI, a
novel paradigm to enhance the adaptability and self-learning capa-
bilities of EAI agents in heterogeneous environments via federated
embodied learning. Specifically, FEAI shares and constructively ag-
gregates environment semantic maps, decomposed task templates,
and action-reward rules from federated EAI agents. The aggregated
information can further enhance EAI agents’ local models through
continuous tuning or dynamically updated knowledge databases.
We believe that FEAI has significant potential to integrate more
advanced technologies, further advancing performance and inno-
vation in the field of EAI.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting; • Computer systems organization → Embedded and
cyber-physical systems.
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1 INTRODUCTION
Embodied AI (EAI) empowers intelligent agents to interact with the
physical world by integrating perception, reasoning, and action [1].
By grounding decision-making in sensory inputs and real-world
feedback, EAI systems can perform complex tasks such as robotic
manipulation and autonomous navigation, positioning EAI as a
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Figure 1: The workflow of an LLM-powered EAI agent.

cornerstone for context-aware applications in smart homes and
automated industries.

Large Language Models (LLMs) and multimodal LLMs (MLLMs),
serving as the core of modern EAI agents, exhibit exceptional intel-
ligence in environmental understanding via multimodal sensor data
[2], as well as in robotic task decomposition and manipulation. As
shown in Fig. 1, an LLM-powered EAI agent typically involves three
stages: 1) Environment Comprehension: Equipped with various IoT
sensors, the agent utilizesMLLMs or programs synthesized by LLMs
to process multimodal sensor data [3, 4], thereby understanding 3D
relations within a given scene; 2) High-Level Task Decomposition:
Based on the user instruction and environment information – typi-
cally represented in textual or embedding forms – the agent utilizes
LLMs to decompose the task into multiple manageable subtasks;
3) Low-Level Action Execution: For each subtask, the agent invokes
various actuators (e.g., robot arms) to perform different operations
(e.g., grasping and placing objects). As such, EAI systems gain en-
hanced capabilities to understand complex instructions and reason
over multimodal inputs by combining LLM-driven reasoning with
sensory-grounded interaction.

Though armed with zero-shot generalizable LLMs, existing EAI
systems struggle to adapt to diverse environments due to two main
limitations: 1) Environmental Heterogeneity: Mobile robots often
operate in expansive environments, observing their surroundings
from diverse angles. Leveraging pre-trained Simultaneous Local-
ization and Mapping (SLAM) models or MLLMs for environmen-
tal comprehension may be inadequate to adapt to heterogeneous
environments; 2) Task & Action Heterogeneity: Environmental het-
erogeneity further amplifies the variability of the decision-making
process during task decomposition and action execution for robotic
manipulation. For example, to grasp an apple for the user, the de-
composed tasks can be "move to the table→ find the apple→ grab
the apple" in one environment, whereas in another, they may be
"move to the fridge → open the fridge → find the apple → grab
the apple." Since LLMs and the physical world are loosely bridged
through intermediate language descriptions or embeddings, relying
solely on the general reasoning capabilities of LLMs for embod-
ied decision-making and action execution may be insufficient to
address such cascaded heterogeneity.
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Figure 2: The overall workflow of FEAI with a central server and multiple federated EAI agents.

These challenges motivate us to ask: Can multiple EAI agents
collaboratively enhance each other’s adaptability to hetero-
geneous embodied environments? To solve this research ques-
tion, we propose FEAI, a new paradigm that enables federated EAI
agents to collaboratively share environmental knowledge and task-
planning experiences. By absorbing the aggregated information,
FEAI facilitates EAI agents to continuously learn and adapt to het-
erogeneous embodied environments.
2 SYSTEM OVERVIEW – BLUEPRINT
Fig. 2 illustrates the system overview of FEAI. Specifically, different
from traditional federated learning that trains a global model by
sharing its parameters [5], FEAI shares and constructively aggre-
gates environment information, task templates, and robot manipu-
lation policies among federated EAI agents.
Environment Sharing. Federated EAI agents can collaboratively
enhance their perception and understanding of the physical world
by sharing environmental information such as semantic maps and
spatial relationships. Instead of transmitting raw sensor data, each
agent constructs a structured semantic map – including semantic re-
lations among objects – which is then abstracted and shared with a
central server. The server performs graph-based and language-level
fusion to align overlapping environments and generate aggregated
representations, allowing agents to benefit from each other’s expe-
riences with enhanced collective situational awareness.
Task Template Sharing. To support generalizable task planning,
federated EAI agents can share abstract representations of how
complex instructions are broken down into manageable steps. By
exchanging these task templates, agents contribute their experience
in translating high-level goals into actionable plans across different
environments. The server leverages techniques like clustering and
tree structuring to organize and refine the shared templates into
generalized patterns. This collaborative sharing allows agents to
benefit from diverse real-world experiences, improving their ability
to understand and plan for new tasks in unfamiliar settings.
Policy Sharing. Federated EAI agents can also improve their capa-
bility to interact with the physical world by sharing manipulation
policies, which capture how specific actions are performed and
evaluated in different contexts. Each agent contributes high-level
descriptions of successful behaviors – such as how to grasp an
object or navigate a cluttered space – along with the conditions
that define success or failure. These policies are then organized and
generalized to create shared guidelines that reflect best practices
across environments. By learning from each other’s experiences,
agents develop more robust and adaptive manipulation strategies
that transfer across heterogeneous real-world scenarios.

Local Knowledge Transfer. Federated EAI agents further transfer
knowledge from the received aggregated information to their local
systems to enhance embodied performance. Two directions can be
considered: 1) Dynamic Knowledge Database: Agents may store this
knowledge in dynamically updated local databases for real-time
reference. 2) Fine-Tuning: Agents can augment the aggregated infor-
mation and fine-tune their local models for enhancement. As such,
federated EAI agents can achieve ongoing adaptation to diverse
environments via database updates or model refinement.

3 CONCLUSION & FUTUREWORK
FEAI is an innovative framework to enhance federated EAI agents’
adaptability and self-learning capabilities in heterogeneous environ-
ments. By sharing aggregated environment information and action
policies, FEAI enables EAI agents to learn from diverse real-world
contexts collaboratively.

Looking ahead, four directions can expand the vision of FEAI.
First, advancing aggregation strategies is critical. We should explore
more fine-grained, context-aware methods for merging environ-
ment maps, task templates, and action policies, enabling agents
to reconcile diverse knowledge with minimal conflict. Second, im-
proving scalability is essential to support large networks of het-
erogeneous agents operating under varying resource constraints.
Third, ensuring privacy protection in knowledge sharing is vital for
real-world deployment, including detecting and mitigating noisy,
malicious, or biased contributions. Lastly, developing standardized
benchmarks and simulation platforms for federated embodied learn-
ing helps catalyze progress, allowing researchers to evaluate in
controlled yet realistic settings. These directions point toward a
future where EAI agents evolve together – continually learning,
adapting, and collaborating at scale.
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