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Abstract—Biometric plays an important role in user authenti-
cation. However, the most widely used biometrics, such as facial
feature and fingerprint, are easy to capture or record, and thus
vulnerable to spoofing attacks. On the contrary, intracorporal
biometrics, such as electrocardiography and electroencephalogra-
phy, are hard to collect, and hence more secure for authentication.
Unfortunately, adopting them is not user-friendly due to their
complicated collection methods and inconvenient constraints on
users. In this paper, we propose a novel biometric-based authen-
tication system, namely MandiPass. MandiPass leverages inertial
measurement units (IMU), which have been widely deployed
in portable devices, to collect intracorporal biometric from the
vibration of user’s mandible. The authentication merely requires
user to voice a short ‘EMM’ for generating the vibration. In this
way, MandiPass enables a secure and user-friendly biometric-
based authentication. We theoretically validate the feasibility of
MandiPass and develop a two-branch deep neural network for
effective biometric extraction. We also utilize a Gaussian matrix
to defend against replay attacks. Extensive experiment results
with 34 volunteers show that MandiPass can achieve an equal
error rate of 1.28%, even under various harsh environments.

Index Terms—Inertial Measurement Unit, Biometrics, User
Authentication, Deep Learning

I. INTRODUCTION

User authentication plays an essential role in the security-

relevant scenarios, such as access control and commercial

transaction. With the prevalence of mobile computing, user

authentication usually functions as the first defense for the

device and system, e.g., unlocking a mobile phone. Prior works

have widely adopted PIN-based [1] and pattern lock-based

[2] mechanisms, which follow the principle of ‘something a

person has or knows’ [3]. In this case, if someone has the

credential, i.e., the ‘something’, he would be authenticated

as the genuine user, no matter who he really is. Therefore,

these approaches are vulnerable to many attacks, including

the stealing, guessing, and shoulder-surfing attacks [4].

On the other hand, biometric-based authentication is known

as ‘something a person is or does’ [3]. It shows advantages

in terms of high security, convenience, non-transferability,

and low possibility to be faked or stolen. However, existing

pervasively adopted biometrics, including fingerprint, facial

feature, and voice-print, are still prone to duplication attacks,

because they are easily collected from body surfaces or remote

Jinsong Han is the corresponding author.

positions. For example, fingerprint can be easily forged and is

vulnerable to spoofing attacks [3]. FaceID adopts depth sensor

like dot projector and infrared depth camera to improve its

security, but it still could be spoofed [5], [6]. Voices can be

captured within a relatively large range, thus the voice-based

authentication is also vulnerable to replay attacks [7].

Recently, researchers exploit some ‘unobtrusive’ biometrics

for authentication, such as brain waves, cardiac activities,

and ear canal features. These biometrics are more secure

because they are usually collected from tissues and organs

inside human bodies. Capturing, recording, or cloning them

is extremely difficult. However, the collection of these bio-

metrics is usually not user-friendly. For instance, users have

to pose specific gestures for collecting the cardiac activities,

e.g., measurements via electrocardiography (ECG) [5] and

photoplethysmography (PPG) [8]. Meanwhile, extra sensing

devices lead to inconvenience to users and hence impede

adopting these intracorporal biometrics in authentication. For

example, stable collection on the electroencephalograph (EEG)

requires users to wear cumbersome sensing devices on their

heads [9]. Collecting ear canal feature requires deploying extra

hardware [5]. Even worse, some of intracorporal biometrics

are not stable, e.g., ECG and PPG are susceptible to human

motion and emotion changes [8]. Therefore, utilizing the

intracorporal biometrics for authentications urgently requests

stable, accurate, and easy-to-operate methods for the feature

collection and extraction.

Recent years have witnessed the pervasive implementation

of inertial measurement units (IMU) in portable devices.

Among them, earphone has become one of the most ubiquitous

individual computing devices [10]. For instance, WT2 plus

earbud [11] has integrated neural network to realize real-

time language translation. With these observations, we aim

to explore a new biometric inside human body, which can be

stably captured by the earphone’s IMU, to achieve secure and

accurate user authentication. Such an authentication system

can also serve as the trusted portable device to securely

connect with other devices, such as the smartphones, smart

appliances, and autonomous vehicles. In particular, it is well

suitable for the hands-free scenarios, e.g., driving and sports.

However, to achieve this goal is challenging. First, it is

difficult to find a brand-new biometric inside the human
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(a) Three attach-
ing locations.

(b) Location 1: throat. The standard devia-
tion of az is 3805.

(c) Location 2: mandible. The standard
deviation of az is 1050.

(d) Location 3: ear. The standard deviation
of az is 761.

Fig. 1. The standard deviation values of three locations.

body to meet the user authentication requirements. Second,

the sampling rate of common IMU is extremely low (not

more than 500Hz [12]) and the raw IMU data contains too

much noise, constraining the distinguishability of collected

biometric. Last but not least, resisting replay attacks remains

an open issue for biometric-based authentications.

In this paper, we propose a novel biometric-based au-

thentication system, namely MandiPass. MandiPass is based

on a new intracorporal biometric, termed as MandiblePrint,
which is extracted from the vibrations of human’s mandibles.

MandiPass collects MandiblePrint via the IMU embedded

in the earphone [13]–[15]. During the authentication, a user

that wears the earphone only needs to voice ‘EMM’ for a

very short time. The vibration generated by the throat will

propagate through the mandible component, reach the ear,

and finally be captured by the IMU in the earphone. To

validate the feasibility of MandiblePrint, we build a one

degree-of-freedom theoretical model and conduct a vibration

propagation experiment. Moreover, to deal with the challenge

of low sampling rate and inferior quality of IMU data,

we perform a series of denoising means on raw IMU data

and leverage a two-branch deep neural network to extract

high-distinguishability MandiblePrint. Finally, we utilize a

Gaussian matrix to transform MandiblePrint into a cancelable

template to defend against replay attacks. Once the cancelable

template is stolen, user can change the Gaussian matrix to

generate a new cancelable template, leading the replay attack

to fail due to the dissimilarity between the stolen and new

cancelable templates.

We invited 34 participants to perform comprehensive exper-

iments. The results show that MandiPass is highly accurate in

user verification. The results also demonstrate the effectiveness

and robustness of MandiPass in real-world scenarios, including

using different sides of ears, eating food, and performing

different activities.

In summary, our contributions are as follows.

• We propose a secure and user-friendly biometric-based

authentication system, MandiPass. It leverages a brand-

new intracorporal biometric, MandiblePrint, which is

extracted from the vibration of the mandible.

• We build a theoretical model to prove the feasibility

of MandiblePrint. We also design a novel two-branch

deep neural network for extracting high-distinguishability

MandiblePrint.
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Fig. 2. The vibration model of the mandible component.

• We implement a prototype of MandiPass and conduct

experiments with 34 volunteers. The experimental results

show that MandiPass is robust and secure, with a low

equal error rate (EER) of 1.28%.

II. FEASIBILITY STUDY

In this section, we first validate that the vibration produced

by throat can pass through mandible before reaching ear,

which enables MandiPass to capture vibration signals contain-

ing mandible characteristics at earphone. Then a theoretical

model is built to study the feasibility of extracting person-

distinguishable biometrics from vibration signals.

A. Vibration Propagation Path

MandiPass employs IMUs to capture the desired biometric.

A typical IMU contains two components, an accelerometer and

a gyroscope. Each component has three axes (x, y, and z) of

vibration information, which are time-series real numbers. The

x-, y-, and z-axis of the accelerometer are represented by ax,

ay, and az, respectively. Likewise, gx, gy, and gz respectively

represent the x-, y-, and z-axis of the gyroscope. To validate

that the vibration indeed propagates from throat to ear and can

be eventually captured by an IMU, we conduct the following

experiment. We first attach IMUs to three different locations

on a volunteer’s head, i.e., to a volunteer’s throat, mandible,

and ear (shown in Fig. 1(a)). Next, we ask the volunteer to

keep silent for a while and then voice an ‘EMM’ sound to

collect the vibration signal. As shown in Fig. 1(b), the standard

deviation of az is high at the throat location, indicating that

the vibration is drastic at the throat. When the vibration

propagates along the mandible, the standard deviation of az
becomes lower, as shown in Fig. 1(c). At the location of

ear, as shown in Fig. 1(d), we observe the lowest value of
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the standard deviation. The experimental results demonstrate

that the vibration generated by the throat can propagate

along the path ‘throat-mandible-ear’, although with a strength

decay. During the propagation, the vibration first passes from

the throat to the mandible, and then from the mandible to

the ear. Moreover, since vibration fades slower in medium

with larger density [16], and the density of bone is much

larger than that of air and other tissues in human body, the

collected vibration signals are mainly composed of vibration

components propagating through the mandible. Therefore, the

collected vibration signals contain the biometrical feature of

the mandible, which is unique to a specific user.

B. Theoretical Model

We model the mandible’s vibration based on its physio-

logical structure. When the mandible starts to vibrate, the

vibration period can be divided into two phases according

to the moving direction of the mandible: positive-direction

vibration and negative-direction vibration. These two phases

appear alternately. We illustrate our one degree-of-freedom

vibration model in Fig. 2. To simplify the model, we neglect

the procedure that the mandible moves from the outer vibration

boundaries to the central axis (shown in Fig.2(b)).

The m is the mass of the mandible. The c1 and c2 are the

damping factors of the two dampers. The k1 and k2 are the

two coefficients of elasticity of the two springs. The vibration

resistance, i.e., the dampers and springs, is introduced by

the tissues (e.g., muscle and fat) surrounding the mandible.

Apparently, the tissues on both sides of the mandible are not

symmetrical, we thus have c1 �= c2 and k1 �= k2.

In the positive-direction phase, the two springs and damper

c1 hinder the positive-direction motion of the mass. Mean-

while, making the mandible vibrate is equivalent to applying

a force on the mandible component. Suppose that the positive-

direction force caused by the throat vibration is FP (t). Ac-

cording to the Newton’s second law, we have:

FP (t) = mx
′′
(t) + c1x

′
(t) + (k1 + k2)x(t), (1)

where x(t) is the positive-direction displacement of the mass.

After performing Fourier transform and term transposition, we

have:

XP (w) =
1− e−iwΔt

− imw3

FP (0) − c1w2

FP (0) +
i(k1+k2)w

FP (0)

, (2)

where w, XP (w), i, and FP (0) are the frequency component,

the spectrum of the vibration signal, the imaginary compo-

nent, and the constant positive-direction force induced by the

positive-direction vibration of the throat, respectively.

If we denote the vibration propagation attenuation coeffi-

cient, the propagation distance from throat to ear, and the

received positive-direction spectrum at ear as α, d, and YP (w)
respectively, we obtain the following formula according to

[17]:

YP (w) = XP (w)e
−αd. (3)

Signal 
Preprocessing

MandiblePrint
Generation

Similarity
Calculation

Registration Phase

Verification Phase

Template

Fig. 3. The architecture of MandiPass.

Through replacing the term XP (w) in Eq. 3 with the right

side of Eq. 2, we have:

YP (w) =
e−αd − e−iwΔt−αd

− imw3

FP (0) − c1w2

FP (0) +
i(k1+k2)w

FP (0)

. (4)

Likewise, the received negative-direction spectrum can be

formulated by:

YN (w) =
e−αd − e−iwΔt−αd

− imw3

FN (0) − c2w2

FN (0) +
i(k1+k2)w

FN (0)

. (5)

Thus, the Y (w) of a complete period, which equals to YP (w)∪
YN (w), can be formulated as:

Y (w) =
e−αd − e−iwΔt1−αd

− imw3

FP (0) − c1w2

FP (0) +
i(k1+k2)w

FP (0)

∪ e−αd − e−iwΔt2−αd

− imw3

FN (0) − c2w2

FN (0) +
i(k1+k2)w

FN (0)

,

(6)

in which Δt1 +Δt2 equals to the time interval of a vibration

period. The m, c1, c2, k1, and k2 vary among different persons

[18]. Although FP (0), FN (0), Δt1, and Δt1 are identity-

irrelevant noise components, they are relatively stable for a

specific person, because human’s speaking habit and vocal

frequency remain stable after puberty [19], especially when

a person only produces a single-tone voice ‘EMM’. Hence,

the received vibration signals, which record the characteristics

of mandible, contain sufficient biometrics (i.e., m, c1, c2, k1,

and k2) and are potential to be utilized to identify individuals.

In this paper, we extract these biometrics, which are termed

as MandiblePrint, both from positive-direction and negative-

direction vibration signals to achieve accurate authentication.

III. SYSTEM DESIGN

In this section, we first introduce the overview of Mandi-
Pass, and then detail each module in MandiPass.

A. System Overview

As illustrated in Fig. 3, the architecture of MandiPass
consists of two phases, i.e., registration phase and verification

phase. The registration phase contains two modules: signal
preprocessing module and MandiblePrint generation module.

The verification phase is not only composed of the two

modules contained in the registration phase, but also the

similarity calculation module.

In the registration phase, user needs to provide a segment of

vibration signal to generate cancelable template. Specifically, a

user first voices ‘EMM’ for a short time to collect raw signals.

Then the identity-irrelevant components in the raw signals

are removed by the signal preprocessing module. MandiPass
obtains a ‘clear’ signal array from this module. Afterwards, the
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MandiblePrint generation module extracts a MandiblePrint
vector from the signal array. The obtained MandiblePrint
vector is then multiplied by a Gaussian matrix and becomes a

cancelable one. Finally, the cancelable MandiblePrint vector is

deemed as a MandiblePrint template and stored in the secure

enclave [20] of the earphone.

In the verification phase, the user initiates a verification

request by voicing ‘EMM’ for a short time. Then the col-

lected raw signals are successively processed by the sig-
nal preprocessing module and the MandiblePrint generation
module. After that, the obtained MandiblePrint vector and

the MandiblePrint template stored in the secure enclave are

utilized to calculate a similarity in the similarity calculation
module. If the similarity is larger than a threshold we set in

advance, the verification request will be accepted. Otherwise,

the verification request will be regarded to be from an illegit-

imate user and rejected.

Vibration Detection And Signal Segmentation

MAD-Based Outlier Processing

High Pass Filtering

Vibration Detection And Signal Segmentation

Gradient Array Calculation

MandiblePrint Extraction

Cancelable Template Generation

Similarity Calculation

Similarity > Threshold ?

Signal Preprocessing

MandiblePrint Generation

Similarity Calculation

Data Collection

Template
AttackerUser

Accept Reject

Yes No

Fig. 4. The workflow of MandiPass.

B. Role of Module

The inner operations of the signal preprocessing,

MandiblePrint generation, and similarity calculation modules

(as shown in Fig. 4) are elaborated in this part.

Signal preprocessing: This module is used to remove

identity-irrelevant components from raw signals. To this end,

MandiPass needs to perform four operations. First, MandiPass
detects the start timestamp of the vibration event. Then, the

outliers caused by hardware imperfection and body motion are

localized by MandiPass. These outliers will be replaced by

the mean values of their adjacent normal values. After that,

MandiPass leverages a high pass filter to remove the noise

caused by human movements. Finally, the signal is normalized

and the signal values in each axis are concatenated together

to form a two-dimensional signal array. The details of each

operation are introduced in Section IV.

MandiblePrint generation: This module primarily con-

tains three operations and MandiPass obtains a cancelable

(a) The standard deviation becomes
large when vibration starts.

(b) The beginning values of different
axes are different.

Fig. 5. The signal standard deviations and start values.

(a) All outliers are detected. (b) The outlier-replaced signal.

Fig. 6. All outliers are replaced with means.

MandiblePrint vector after the three operations. First, Mandi-
Pass calculates gradients for each axis of signals in the signal

array. A gradient array that contains both positive-direction

and negative-direction vibration features is obtained through

this operation. Afterwards, the gradient array is fed into a

metric extractor (a deep neural network) and the biometric

extractor outputs a vector, i.e., MandiblePrint. Finally, the

MandiblePrint vector is multiplied by a Gaussian matrix to

get a cancelable one. The design of our biometric extractor

and the generation method of the cancelable MandiblePrint
vector are elaborated in Section V.

Similarity calculation: MandiPass calculates the cosine

distance [21], i.e., the similarity, between the cancelable

MandiblePrint vector obtained from a verification request and

the stored cancelable MandiblePrint template in this module.

If the similarity is larger than the threshold, it means that

the verification request is initiated by the authentic user. The

verification request is thus accepted. Otherwise, MandiPass
rejects the verification request because it is likely to be

initiated by an illegitimate user.

IV. SIGNAL PREPROCESSING

Vibration detection and signal segmentation: To obtain

the signal segment that records mandible vibration, we need

to find the start timestamp of the vibration in the raw signal.

Since the mandible vibration would make the signal values

(in each axis, each timestamp corresponds to a signal value)

change drastically, which means that the standard deviation

of a certain number of continuous signal values would be-

come large, we determine the start timestamp according to

the standard deviation. Specifically, we first divide captured

accelerometer signal values into windows and then calculate

the standard deviation of each window. Each window has ten

continuous signal values and the slide stride is also ten signal

values. As shown in Fig. 5(a), if the standard deviation of a

window is larger than 250 and the standard deviations of the
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subsequent windows are not lower than 100, the vibration is

regarded to start at this window. In particular, we consider the

timestamp of the first signal value of this window as the start

timestamp of the vibration event. Next, we select n continuous

signal values behind the start timestamp for each axis to get

six signal segments.
MAD-based outlier processing: Due to the hardware im-

perfection of IMU and motion noise (e.g., walk), the collected

raw signals may have some values that are extremely large

or small, which should be regarded as outliers. To deal with

these outliers, we first detect them by a MAD [22] algorithm,

and then replace them with means of normal values. To be

specific, We first utilize the MAD outlier detection method

to detect all outliers in each signal segment alternatively. As

shown in Fig. 6(a), all outliers are found (marked by stars)

in a segment, which demonstrates that the MAD algorithm

is effective. Afterwards, in order to eliminate the impact of

outliers, we perform a two-step mean-based outlier replacing

on each signal segment, in which we replace each outlier

with the mean of its two previous normal values and two

subsequent normal values. The replacing result, shown in Fig.

6(b), proves that our two-step mean-based outlier replacing

method is effective.
High pass filtering: Since human activities may generate

low-frequency components (LFC), which are irrelevant to the

MandiblePrint, we need to filter these LFC out. According

to the research in [17], the frequency components mostly are

less than 10Hz during the body movements. Given that normal

people’s fundamental frequency of vocal vibration varies from

100Hz to 200Hz [23], a high pass filter is needed to preserve

the high-frequency components. Therefore, we utilize a high

pass four-order Butterworth filter with a cutoff frequency of

20Hz to remove the LPC from each signal segment alternately.
Normalization and multi-axis concatenation: It is note-

worthy that the start values of different axes are different, i.e.,

the elements of some axes oscillate around large values while

that of other axes oscillate around small values, as shown in

Fig. 5(b). If we directly use un-normalized signals to extract

MandiblePrint, the contribution of these axes, the values of

which are small, would be concealed. Thus, we normalize the

signal values through min-max normalization. For each signal

segment, the normalized value xn of each original value xo

can be calculated by:

xn =
xo − xmin

xmax − xmin
, (7)

where xmax and xmin are the maximum and minimum values

in this signal segment. Moreover, to make full use of captured

signals of six axes and provide dimension-consistent input for

our biometric extractor, we concatenate six signal segments

and obtain a signal array with a dimension of (6, n). Empiri-

cally, we set n as 60.

V. MANDIBLEPRINT EXTRACTION

In this section, we aim to extract person-distinguishable

MandiblePrint from the signal array. However, our prelimi-

nary experiments show that calculating statistical features is

(a) The SFSes of different users are
similar.

(b) The accuracy obtained by using
statistical features and different clas-
sifiers.

Fig. 7. SFS can only achieve low classification accuracy.

infeasible to extract MandiblePrint. We thereby design a novel

deep learning model to extract high-quality MandiblePrint.

A. Infeasibility of Statistical Features

To extract MandiblePrint, traditional and intuitive solutions

are to calculate some statistical features for each axis. Thus,

we conduct a preliminary experiment to explore whether the

statistical features of different persons are distinguishable.

Specifically, we first invite four volunteers and collect 500

signal arrays for each volunteer. In each signal array, we

calculate six common statistical features (i.e., mean, median,

variance, standard deviation, upper quartile, and low quartile)

for each axis. In this way, we obtain 6 × 6 = 36 statistical

features for each signal array. Each set of 36 statistical features

is called a statistical feature sample (SFS). We then randomly

select a SFS for each volunteer and plot the selected four

SFSes in Fig. 7(a), where one can find that it is hard to

figure out the difference between different SFSes. Further, we

label the four volunteers’ SFSes by four integers from zero

to three. By using 80% SFSes as the training set and the rest

20% ones as the testing set, we utilize four classic classifiers

to perform classification: support vector machine (SVM), k-

nearest neighbours (KNN), decision tree (DT), naive Bayes

classifier (NB), and neural network (NN). The result in Fig. 7

indicates that even the highest classification accuracy is lower

than 65%. Therefore, it is infeasible to use statistical features

as the MandiblePrint.

B. Biometric Extraction

Since convolutional neural networks (CNN) have shown

excellent ability of feature extraction [24], we thus attempt

to design a CNN-based learning model to mine ‘deep-hidden’

MandiblePrint from signal arrays. Moreover, considering that

different biometrics exist in positive-direction and negative-

direction vibration signals (according to Eq. 6), we separately

perform convolution on these two directions of signals.

In specific, we first separate the positive- and negative-

direction vibration signals by calculating gradients for each

axis. The ith gradient of the jth axis can be calculated by:

gji =
vji+1 − vji

|tji+1 − tji |
, i ∈ [1, n− 1], j ∈ [1, 6], (8)

where vji is the ith signal value of the jth axis, and |tji+1− tji |
is the normalized time interval between vji+1 and vji . After
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MandiblePrint

Positive-
Direction

Negative-
Direction

Convolution BN ReLU Concatenation Fully-Connected Sigmoid

Fig. 8. The architecture of our biometric extractor.

calculating all gradients, we separate them according to their

signs, i.e., the gradients that are larger than or equal to zero

belong to the positive direction, and the rest gradients belong

to the negative direction. In this manner, we obtain approxi-

mately n/2 gradients for each direction per axis. To provide

dimension-consistent inputs for our CNN, we perform linear

interpolation to make each direction has n/2 gradients. We

finally obtain a gradient array with a dimension of (2, 6, n/2),
where ‘2’ means the two directions.

Next, we design a two-branch CNN to extract

MandiblePrint from the gradient array. We notice that

the data structure of each axis is time-series values, thus it

is reasonable to perform convolution on continuous gradients

in each axis to extract temporal features. Meanwhile,

since different axes contain different degree-of-freedom

features, we also perform convolution among different axes

to extract spatial features. Finally, the architecture of our

biometric extractor is illustrated in Fig. 8. There are two

convolutional branches responsible for extracting temporal-

spatial features from the positive- and negative-direction

gradients, respectively. Each convolution branch contains

three convolutional layers and each of which is followed by a

batch normalization (BN) function [25] and a rectified linear

unit (ReLU) [26]. The size of each convolutional kernel

is 3 × 3 and the stride size is 1 × 2. The BN is used to

prevent data distribution from offset and the ReLU is used to

decrease the inter-neuronal dependence. The BN and ReLU

are simultaneously leveraged to improve the effectiveness and

robustness of the biometric extractor. After the convolutional

operation, we flatten the outputs of the two branches and

concatenate them to obtain a feature vector. The feature

vector then passes through a fully connected layer and a

Sigmoid function [27], and becomes MandiblePrint. The

output of the Sigmoid function, i.e., MandiblePrint, is a

biometric vector with a dimension of (1, 512). At last, a fully

connected layer is used to project the biometric vector into

different classes (i.e., different person IDs), which enables us

to train the biometric extractor through loss calculation and

back propagation [28].

C. Training Process

To make the biometric extractor learn to effectively extract

MandiblePrint, we need to train it in a proper manner. How-

ever, it is noteworthy that users do not need to provide any

vibration signal for the training process, because the biometric

extractor is trained by the verification service provider (VSP)

(e.g., earphone manufacturer). To be specific, the VSP can hire

a large number of people to collect signal arrays. Then these

signal arrays are labeled and input to the biometric extractor

in a unit of batch. The cross entropy [29] and Adam optimizer

[30] can be utilized to calculate loss and update the parameters

in the biometric extractor. Once the biometric extractor is well

trained, it can be directly deployed on the earphone because

it has had the ability of MandiblePrint extraction.

VI. SECURITY ENHANCEMENT

It is critical to analyze the security of an authentication

system. In this section, we first consider four main and

potential attacks, and then discuss the defense methods against

them.

A. Attack model

Zero-effort attack: In this attack, we assume that the

attacker has no awareness of MandiPass’s principle. The

attacker steals the victim’s earphone and attempts to use it

to conduct authentication.

Vibration-aware attack: In this attack, our assumption

is that the attacker knows the principle of MandiPass. The

attacker attempts to produce a vibration signal to deceive

MandiPass.

Impersonation attack: In this attack, we assume that the

attacker first observes the verification process of the victim.

Then the attacker mimics the voicing manner of the victim to

launch the impersonation attack.

Replay attack: Since the vibration propagates inside the

human body, it is difficult for the attacker to eavesdrop

vibration signals. We assume that the replay attacker steals

the MandiblePrint template stored in the secure enclave and

exhibits it to MandiPass to launch the replay attack.

B. Defense

Zero-effort attack analysis: Since user needs to produce

a short-time vibration to perform verification in MandiPass,

the attacker who is not awareness of this principle cannot

provide signal array to MandiPass. Thus, the attacker cannot

pass the verification, which means that MandiPass is capable

of defending against zero-effort attacks.

Vibration-aware attack analysis: In MandiPass, user is

accepted if and only if his provided MandiblePrint is similar

to the template stored in the secure enclave. The attacker

is unable to provide such similar MandiblePrint, leading the

attack to fail. Hence, MandiPass can defend against vibration-

aware attacks.

Impersonation attack analysis: Even if the attacker is able

to mimic the voicing manner of the victim, his MandiblePrint
is still dissimilar to the victim’s one, resulting in the calculated

similarity smaller than the threshold. Therefore, the attack will

fail and MandiPass is also able to defend against imperson-

ation attacks.
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Fig. 9. The experiment setup for MandiPass.

Replay attack defense: To prevent MandiPass from replay

attacks, we leverage a Gaussian matrix [8] to generate cance-

lable MandiblePrint template. Specifically, the MandiblePrint
template is transformed by a Gaussian matrix before be-

ing stored in the secure enclave in the registration phase.

The transformed MandiblePrint template is called cancellable

MandiblePrint template. Let G be a Gaussian matrix and x be

a MandiblePrint vector. A transformed MandiblePrint can be

denoted by x′ with x′ = x × G. In each verification request,

the new extracted MandiblePrint vector is also transformed as

a cancelable one before similarity calculation. In this way,

once the cancelable MandiblePrint template is stolen, the

user can change Gaussian matrix used for transformation,

so that the similarity between two MandiblePrint vectors

transformed by different Gaussian matrices would be smaller

than the threshold. The replay attacker, who does not know the

changed Gaussian matrix, cannot pass the verification when

exhibiting the old template to MandiPass. Besides, the attacker

cannot calculate the Gaussian matrix by only using the stolen

template, which makes the transformation procedure secure.

Meanwhile, legitimate authentication would not be impacted

since the similarity of two MandiblePrint vector transformed

by the same Gaussian matrix is still high enough.

VII. EVALUATION AND RESULT

We realized MandiPass with off-the-shelf devices and con-

ducted extensive experiments to evaluate its performance un-

der real-world environments.

Experiment setup: As shown in the left part of Fig. 9,

we built a prototype of MandiPass on a Raspberry Pi. This

gadget allows us to access the IMU raw data. We used a

UNO Arduino board to control the signal collection. While

collecting signals, the IMU is attached on the ear by adhesive

tapes and covered by a normal earphone cover. We employed

two types of IMU, i.e., MPU-9250 and MPU-6050. to conduct

experiments. In the default setting, we used MPU-9250 IMU.

The basic frequency of the Raspberry Pi CPU is 160Hz, which

is the same as the one in WT2 earbuds and can be achieved by

earphone mainboard. The framework used to build the CNN-

based biometric extractor is PyTorch.

Data collection: We totally invited 34 volunteers (28 males

and 6 females) aged from 20 to 45 to participate in our

experiments. We collected 23408 signal arrays for overall

performance evaluation and each participant provided at least

500 signal arrays. We also collected over 11200 signal arrays

in the extensive experiments to evaluate the robustness and

security of MandiPass.

Metrics: To evaluate the authentication performance quan-

titatively, we define four metrics: false reject rate (FRR), false

accept rate (FAR), EER, and verification success rate (VSR).

FRR is the probability that a legitimate user is falsely rejected.

It can be represented by the ratio between the number of false

rejected signal arrays and the number of all signal arrays. The

lower the FRR is, the better performance MandiPass has. FRR

can be calculated by:

V∑

i=0

Ni−1∑

j=0

Ni∑

k=j+1

1sim(Sj
i ,S

k
i )<t

V∑

i=0

Ni−1∑

j=0

Ni∑

k=j+1

1

, (9)

where V , t, and Ni are the number of volunteers, the thresh-

old, and the number of signal arrays of the ith volunteer,

respectively. The 1 equals to one. The 1sim(Sj
i ,S

k
i )<t equals

to one when the similarity between the MandiblePrint vectors

extracted from Sj
i and Sk

i is less than t. Otherwise, it equals

to zero. The FAR is the probability that an illegitimate user is

falsely accepted. It can be represented by the ratio between the

number of falsely accepted signal arrays and the number of

all signal arrays. The smaller the FAR, the better MandiPass
is. FAR can be calculated by:

V−1∑

i=0

Ni∑

j=0

V∑

k=i+1

Nk∑

l=0

1sim(Sj
i ,S

l
k)≥t

V−1∑

i=0

Ni∑

j=0

V∑

k=i+1

Nk∑

l=0

1

. (10)

EER is the value of FAR or FRR when FAR equals to FRR.

It can be obtained by altering the threshold. The lower the

EER is, the better MandiPass is. VSR is the probability that

a legitimate user is successfully accepted. Higher VSR means

better MandiPass. It can be calculated by:

V SR = 1− FRR. (11)

A. Overall Performance

We first evaluated the performance of our biometric ex-

tractor by comparing the classification accuracy of different

classifiers, i.e., SVM, NB, DT, KNN, NN, and biometric

extractor (BE). We randomly selected 80% signal arrays as

the training set and the rest 20% ones as the testing set. The

classification experiment was performed ten times and we used

the mean of ten accuracy as the final classification result. The

experimental results are shown in Fig. 10(a). It can be observed

that our biometric extractor outperforms other classifiers. It

achieves the largest classification accuracy of 90.54%. There-

fore, our biometric extractor can effectively extract person-

distinguishable mandible biometrics from gradient arrays.

To extract MandiblePrint, we treated 33 volunteers’ signal

arrays as the training set of hired people and extracted the rest

volunteer’s (plays the role of the user) MandiblePrint vectors.
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(a) The classification accuracy of different classi-
fiers.

(b) The FAR and FRR curve of MandiPass. (c) The VSRs of five males and five females.

Fig. 10. The overall performance of MandiPass.

(a) The effect of number of involved axes. (b) The effect of training set length. (c) The effect of MandiblePrint length.

Fig. 11. The effect of system setting.

In this way, we extracted MandiblePrint vectors of all the

volunteers alternatively. We first calculated the mean similarity

of a same user and different users. The results indicate that the

mean similarity between different MandiblePrint vectors of a

same user is 0.4884 while that of different users is 0.7032. We

then increased the threshold from 0.5 to 0.6 to calculate FAR

and FRR. The experimental results are shown in Fig. 10(b).

It can be found that when the threshold is 0.5485, the FRR

equals to FAR, where we obtain the EER, 1.28%. The low

EER demonstrates that MandiPass performs significantly well

in user verification. In the following experiments, we fixed the

threshold to 0.5485.

To explore if the authentication performance is fair to differ-

ent genders or users, we randomly selected five males and five

females and calculated their VSRs. The experimental results,

shown in Fig. 10(c), indicate that MandiPass’s performance

is fair to different genders as well as different users with the

same gender.

As aforementioned, we used two types of IMUs for Mandi-
Pass evaluation, we find that the EERs of MPU-9250 and

MPU-6050 are 1.28% and 1.29% respectively. There is no ap-

parent EER difference between the two types of IMUs, which

shows that MandiPass has outstanding device scalability.

B. Effect of System Settings

In this part, we evaluated the performance of MandiPass
under different system settings, including the number of in-

volved axes, the length of the training set, the length of the

MandiblePrint vector, and the side of the ear (left or right).

The effect of involved axes: In this experiment, we con-

sidered the axis order as ‘ax, ay, az, gx, gy, gz’. The involved

axes were selected according to this order. For example, one

axis means ax, two axes means ‘ax, ay’, and so on. The

experimental results are shown in Fig. 11(a). The results

indicate that involving more axes can generate lower EER.

Besides, using an accelerometer only can achieve a EER as

low as 2.05%.

The effect of training set length: The length of the training

set is the time duration of collecting vibration signals for each

hired person. We increased the length from 10 seconds to 60

seconds with a stride of 10 seconds. As shown in Fig. 11(b),

with the increase of the training set length, the EER keeps

decreasing. When the length is 60 seconds, the EER achieves

1.28%. Therefore, collecting one-minute vibration signals for

each hired person is sufficient to train the biometric extractor.

The effect of MandiblePrint length: It is worth noting

that our default MandiblePrint length is 512. To explore if

the MandiblePrint length affects MandiPass’s performance,

we selected other four commonly used biometric length: 32,

64, 128, and 256. The experimental result shown in Fig.

11(c) indicates that the EER decreases with the increase of

MandiblePrint length. When the length is 512, the EER is

less than 1.5%. Thus, it is reasonable to set the length of

MandiblePrint as 512.

The effect of ear side: In our default setting, MandiPass
collects vibration signals from right ears. To validate the

feasibility of left ear, we collected a batch of vibration signals

from users’ left ears. The experimental result shows that the

VSR of left ear is as high as 98.02%. Thus, using left ear in
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(a) Lollipop. (b) Water. (c) Walk. (d) Run.
Fig. 12. The similarity distributions of lollipop, water, walk, and run. The outer numeric interval is the similarity range and the inner number is the
corresponding percentage.

MandiPass is feasible as well.

C. Impacts of Related Factors

We also considered the impacts of four factors from users’

daily life. We categorized the factors into two groups, food,

and activity.

Food: We took the lollipop and water as the representatives

of food since users may use MandiPass when they are eating

food or drinking. We first conducted an extensive experiment

with lollipops, in which we collected testing signal arrays

with lollipops in users’ mouths. The similarity distribution

shown in Fig. 12(a) indicates that lollipop has negligible

impact on MandiPass, because all the similarity between the

normal signal arrays (without lollipop) and the testing signal

arrays (with lollipop) are larger than the threshold. Likewise,

we conducted another extensive experiment with water. The

similarity distribution shown in Fig. 12(b) proves that water

also has negligible impact on MandiPass (the VSR is larger

than 99%).

Activity: To assess the robustness of MandiPass towards

human activity, we asked volunteers to walk or run while col-

lecting testing signal arrays. We then calculated the similarity

between the normal signal arrays (static) and the testing signal

arrays (moving). The similarity distributions shown in Fig.

12(c) and Fig. 12(d) indicate that activity does not affect the

performance of MandiPass. Thus, MandiPass is significantly

robust.

D. Effect of Orientation and Tone

Since the orientation of the earphone and the tone of

voicing may affect the performance of MandiPass, we also

evaluated MandiPass’s performance with different orientations

and tones.

Fig. 13. The effect of tone.

Orientation of IMU: To explore the effect of orientation,

we collected four groups of signal arrays and the gap between

any two continuous groups is 90 degrees. We then calculated

the similarity distributions of signal arrays between any two

groups. The results are shown in Fig. 13, which indicate that

the similarity of any two signal arrays with different orienta-

tions is still higher than the threshold. Therefore, MandiPass
is robust to the orientation variation.

Tone of voicing: Even if we recommend users to produce

‘EMM’ voice naturally, users may change their tones uncon-

sciously during authentication, which may further impact the

EER of MandiPass. Hence, We asked volunteers to raise or

lower their tones intentionally when collecting signal arrays in

this experiment. Then we calculated the similarity distributions

between normal signal arrays (normal tone) and tone-changed

ones (high or low tone). The results shown in Fig. 14 indicate

that even with a high or low tone, users can still be successfully

verified with a high similarity, which proves that MandiPass
is robust to tone variation as well.

Fig. 14. The effect of tone.

E. Overhead

Time cost: The time cost of MandiPass for processing

an authentication request mainly comes from three compo-

nents: vibration signal collection, signal preprocessing, and

MandiblePrint extraction. First, user needs to voice ‘EMM’

for a short time to collect vibration signals, which costs 0.2

(60 ÷ 350) seconds. Second, With the same CPU frequency

of WT2 earbud, the signal preprocessing costs less than 0.01

seconds. Finally, with the WT2 earbud’s CPU frequency also,

biometric extractor outputs an MandiblePrint vector within

1 second on average. Therefore, MandiPass can process an

authentication request with less than 2 seconds and it has

outstanding real-time performance.

Storage consumption: The storage consumption of Mandi-
Pass comes from two components: biometric extractor stor-

age and cancelable MandiblePrint template storage. First,

the biometric extractor requires approximately 5MB to store
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TABLE I
COMPARING MandiPass WITH SKULLCONDUCT AND EARECHO.

System RTC≤ 1s FRR ≤ 2% RARA IAN
MandiPass � � � �

SKullConduct � × × ×
EarEcho × × × ×

its parameters. Second, a cancelable MandiblePrint template

consumes about 1.8KB storage space. Therefore, the total

storage consumption is less than 6MB, which is acceptable

to an authentication system.

F. Long-Term Observation:

To validate that if MandiPass can still authenticate users

with a high VSR after a long term, we randomly selected six

volunteers to conduct a validation experiment. Specifically,

we first collected two batch of signal arrays at time t1
and t2, respectively. The time interval between t1 and t2 is

two weeks. Then we calculated the similarity between the

MandiblePrint generated by signal arrays collected at t1 and

t2. The experimental results show that the average VSR of

these volunteers is larger than 99.5%. Hence, MandiblePrint
is stable and MandiPass is robust in long term use.

G. Security Assessment

As introduced in Section VI, we need to assess the security

of MandiPass towards four attack models. In the zero-effort

attack experiment, we invited five volunteers (attackers) who

do not know the principle of MandiPass to initiate authentica-

tion requests 20 times per attacker. As a result, the VSR for

these attackers is 0%. In terms of the vibration-aware attack,

the EER shows that the VSR for attackers is 1.28%. As for the

impersonation attack, we first asked five volunteers (attackers)

to observe the voicing manners of other five volunteers (vic-

tims). Then we collected signal arrays with these attackers.

After that, we calculated the similarity between attackers’

MandiblePrint and victims’ MandiblePrint. The experimental

results show that the VSR for attackers is 1.30%. Finally, to

assess the security of MandiPass towards replay attacks, we

calculate the similarity between cancelable MandiblePrint vec-

tors transformed by different Gaussian matrices. The result, a

VSR of 0.6%, indicates that nearly all replayed MandiblePrint
vectors are rejected. Therefore, MandiPass can defend against

these four types of attacks effectively.

H. Comparing with Existing Works

We compared MandiPass with two related works, i.e.,

SkullConduct [31] and EarEcho [5], in terms of the registration

time cost (RTC), EER, replay attack resilience ability (RARA),

and immunity against acoustic noise (IAN). SkullConduct is

an acoustic signal-based authentication system collecting skull

biometrics as authentication credential, which can be deployed

on GoogleGlass. EarEcho, a state-of-the-art earphone-based

authentication system, collects ear canal biometrics to identify

individuals. The comparing results are shown in Table 1. First,

MandiPass and SkullConduct can finish the registration within

one second, but EarEcho does not have such ability. Secondly,

the FRR of MandiPass is lower than that of SkullConduct and

EarEcho. Thirdly, MandiPass can defend against replay at-

tacks, while the other two systems cannot. Finally, MandiPass
is immune to acoustic noise, but the other two systems are

susceptible to acoustic noise. Thus, MandiPass outperforms

SkullConduct and EarEcho.

VIII. RELATED WORK

Authentication on wearable devices: According to

the type of authentication credential, existing authentica-

tion on wearable devices can be divided into two cate-

gories: knowledge-based (something people remember) and

biometric-based (something inherent to people) [32]. For

knowledge-based authentication, password and pattern are

mostly used authentication credential. For example, Vlaen-

deren et al. [33] develop a pattern-based authentication ap-

proach deployed on smartwatch, in which camera is leveraged

to input user’s secrete pattern. Compared with knowledge-

based authentications, biometric-based ones are more secure

since biometrics are difficult to be stolen or duplicated. For

example, Cao et al. [8] collect PPG on smartwatch to achieve

secure authentication. Gao et al. [5] propose to pack a mi-

crophone on earphone to extract human’s ear canal features.

However, existing biometrics collected via wearables either are

susceptible to ambient noise or are difficult to be captured. In

this paper, we devise MandiPass to achieve robust and easy-

to-use authentication via earphone IMU.

IMU-based sensing on wearable device: Wearable devices

can be fixed at different parts of human body [32], such as

head, limb, and back. Various IMU-based sensing technologies

are developed at these body parts. For instance, Hwang et
al. [34] demonstrate that a single head-worn IMU can be

used to evaluate interpersonal activities. Based on individual

gait events, it can also measure coordination between two

gait patterns. To help those who suffering from tetraplegia

to use an easy control method for some certain activities,

Severin et al. [35] place the IMUs on top of headphones

to extract features from head movement data. With a slim

pedestrian dead reckoning (PDR) sensor bound on the shoe,

Gupta et al. [36] realize real-time indoor localization in GPS

denied environment. Abyarjon et al. [37] show that with proper

development using sensor fusion algorithms, an IMU-based

prototype attached to human upper back can continuously

monitor the user’s behavior, helping the user form a good

posture habit. In this paper, we propose an IMU-based secure

authentication technique deploying on earphone.

IX. CONCLUSION

To realize a secure and user-friendly biometric-based au-

thentication, we propose MandiPass, which extracts biometrics

from the vibration of user’s mandible. The feasibility of

MandiPass is validated via a rigorous theoretical model. We

introduce deep learning techniques to improve the efficiency

and effectiveness of MandiPass in both the biometric extrac-

tion and verification. The security of MandiPass is further
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enhanced via cancellable templates and transformation coun-

termeasures. Extensive experiment results over 34 subjects

indicate that MandiPass is highly accurate, robust, and secure

in various environments.
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