
GPIoT: Tailoring Small Language Models for IoT Program
Synthesis and Development

Leming Shen1, Qiang Yang2, Xinyu Huang1, Zijing Ma1, Yuanqing Zheng1
1The Hong Kong Polytechnic University, 2University of Cambridge

{leming.shen,unixy-xinyu.huang,zijing.ma}@connect.polyu.hk,qy258@cam.ac.uk,csyqzheng@comp.polyu.edu.hk,

ABSTRACT
Code Large Language Models (LLMs) enhance software develop-
ment efficiency by automatically generating code and documen-
tation based on user requirements. However, code LLMs cannot
synthesize specialized programs when tasked with IoT applications
that require domain knowledge. While Retrieval-Augmented Gener-
ation (RAG) offers a promising solution by fetching relevant domain
knowledge, it necessitates powerful cloud LLMs (e.g., GPT-4) to
process user requirements and retrieved contents, which raises
significant privacy concerns. This approach also suffers from un-
stable networks and prohibitive LLM query costs. Moreover, it is
challenging to ensure the correctness and relevance of the fetched
contents. To address these issues, we propose GPIoT, a code genera-
tion system for IoT applications by fine-tuning locally deployable
Small Language Models (SLMs) on IoT-specialized datasets. SLMs
have smaller model sizes, allowing efficient local deployment and
execution to mitigate privacy concerns and network uncertainty.
Furthermore, by fine-tuning SLMs with our IoT-specialized datasets,
the SLMs’ ability to synthesize IoT-related programs can be sub-
stantially improved. To evaluate GPIoT ’s capability in synthesizing
programs for IoT applications, we develop a benchmark, IoTBench.
Extensive experiments and user trials demonstrate the effectiveness
of GPIoT in generating IoT-specialized code, outperforming state-
of-the-art code LLMs with an average task accuracy increment of
64.7% and significant improvements in user satisfaction.

CCS CONCEPTS
• Computing methodologies→ Artificial intelligence; • Com-
puter systems organization→ Embedded and cyber-physical
systems.

KEYWORDS
Small Language Model, IoT Program Synthesis, Fine-tuning

ACM Reference Format:
Leming Shen1, Qiang Yang2, Xinyu Huang1, Zijing Ma1, Yuanqing Zheng1 .
2025. GPIoT: Tailoring Small Language Models for IoT Program Synthesis
and Development. In The 23rd ACM Conference on Embedded Networked
Sensor Systems (SenSys ’25), May 6–9, 2025, Irvine, CA, USA. ACM, New York,
NY, USA, 14 pages. https://doi.org/10.1145/3715014.3722064

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SenSys ’25, May 6–9, 2025, Irvine, CA, USA
© 2025 Association for Computing Machinery.
ACM ISBN 979-8-4007-1479-5/25/05. . . $15.00
https://doi.org/10.1145/3715014.3722064

Existing Code LLMs

</>

User
Data

Code

GPIoT (Local)

TDSLM

IoT task

Sub-task 1
Sub-task 2
……
Sub-task n

RTSLM

Task Specification 1
Task Specification 2
……
Task Specification n

</>
Code

& Doc.

CGSLM

Figure 1: Existing code LLMs need to transmit sensitive data
to remote servers. In contrast, GPIoT features three local
SLMs to protect user privacy and reduce query costs.

1 INTRODUCTION
Large language models (LLMs) [65, 70] are revolutionizing various
aspects of embedded system development and mobile computing,
e.g., smartphone task automation [74], advanced virtual assistants
[46], and even IoT data comprehension [4, 41, 48, 79]. Code LLMs
(e.g., WizardCoder [43] and CodeLlama [53]) stand out as promising
tools designed to synthesize programs based on user requirements
described in natural language. As illustrated in Fig. 1, the integra-
tion of programming tools with code LLMs significantly enhances
software development by automating code completion, code gener-
ation, bug detection, documentation writing, etc.

While powerful and promising, when confronted with IoT appli-
cations [6, 25, 26, 80–84] that require special domain knowledge,
existing code LLMs tend to simply provide general solutions with
sub-optimal performance (§ 2.2). This is because they focus on
general-purpose programming tasks [34] rather than being tailored
to any particular domain. Moreover, IoT-related knowledge and
programs only occupy a small proportion of the datasets which
code LLMs were trained on [85]. Consequently, IoT terminologies
will be assigned a lower priority during inference with the gener-
ated code less dedicated to the IoT domain (§ 2.2). This motivates
the following research question: Can we build a code LLM specially
tailored for IoT application code generation tasks? If yes, we can
synthesize IoT-related programs with higher task accuracy and
efficiency, offering significant convenience for IoT developers.

A potential approach can be Retrieval-Augmented Generation
(RAG) [36], which provides LLMs with retrieved domain knowledge
to enhance their abilities in generating accurate and contextually
relevant solutions. Existing works [17, 28, 56] construct a sophisti-
cated LLM+RAG agent to gradually generate code through multiple
intermediate steps via prompts. Nonetheless, they suffer from three
main problems. 1) A powerful LLM with strong language compre-
hension capability is needed to learn from the retrieved knowledge.
However, cloud LLMs (e.g., GPT-4 [2]) may suffer from bad network
conditions, high costs, and privacy concerns, while local LLMs (e.g.,
Llama2-70b [61]) have harsh requirements in system resources (e.g.,

https://doi.org/10.1145/3715014.3722064
https://doi.org/10.1145/3715014.3722064

SenSys ’25, May 6–9, 2025, Irvine, CA, USA Leming Shen, Qiang Yang, Xinyu Huang, Zijing Ma, Yuanqing Zheng

memory and network). 2) Complicated RAG designs (e.g., itera-
tive retrieval [77]) are mandatory to ensure the correctness and
high relevance of the retrieved knowledge, with extended process-
ing time. Otherwise, LLMs may fail to focus on the IoT context
and still provide general solutions [75]. 3) Meticulously designed
prompts are required to ensure that outputs must strictly follow
pre-defined formats [38], which is extremely challenging due to the
hallucinations and unreliability of LLMs [62].

To tackle the above problems, we propose GPIoT, a code gen-
eration system tailored for IoT application development by fine-
tuning local small language models1 (SLMs) on IoT-specialized
text-generation datasets. This approach has the following benefits:
1) The system overhead, privacy leakage, and network instability
can be mitigated, as SLMs have smaller sizes and can be locally de-
ployed without incurring heavy resource burdens. 2) SLMs tuned on
IoT-specialized datasets can generate responses with significantly
enhanced quality and higher relevance to the IoT domain [58]. 3) As
our tuning datasets are well-structured text data, the tuned SLMs
can produce intermediate outputs following the expected format
with enhanced stability and avoid hallucinations.

We implement GPIoT2 with three tailored SLMs to handle differ-
ent stages of IoT application development: TDSLM for Task Decom-
position, RTSLM for Requirement Transformation, and CGSLM for
Code Generation. Though tuning one SLM to handle all the tasks is
possible, it is extremely challenging due to SLMs’ limited language
understanding and processing capabilities [35, 42]. As shown in
Fig. 1, TDSLM first decomposes an IoT application into multiple
sub-tasks with detailed descriptions. Next, the descriptions are con-
verted into well-structured specifications following pre-defined
formats by RTSLM. Accordingly, CGSLM further generates a list
of code snippets with detailed documentation. By sequentially exe-
cuting the code based on the documentation, the IoT task can be
solved. Note that we only fine-tune TDSLM and CGSLM as these
two stages require IoT domain knowledge during inference while
RTSLM only needs basic language processing.

In practice, we face three significant technical challenges. 1)
Lack of high-quality data. To the best of our knowledge, there
are no IoT-oriented user-requirement-to-sub-task and sub-task-to-
program text-generation datasets. Thus, we first construct two
datasets containing IoT knowledge retrieved from various public
sources, aiming to enhance the task decomposition and code gen-
eration abilities of TDSLM and CGSLM, respectively. Moreover, we
design an IoT-oriented text data augmentation method to enhance
the datasets’ quality and diversity, considering the unique charac-
teristics (e.g., sensor modality and resource heterogeneity) of IoT
applications, thereby enhancing SLMs’ knowledge comprehension
and code generation capabilities for IoT tasks. 2) Domain mis-
alignment between SLMs. The decomposed tasks generated by
TDSLM may fall beyond the scope that CGSLM can handle due to
domain misalignment. This is because the two SLMs focus on dif-
ferent stages of IoT application development during tuning, which
could lead to thematic inconsistencies in task interpretation and
execution (§ 2.2). To tackle this, we propose a parameter-efficient

1We consider SLMs as open-source language models that can be locally deployed and
operated efficiently on commodity GPUs [29] (e.g., Llama2-13b with INT8 quantization
requires around 16 GB of GPU memory).
2The models and datasets are available at https://github.com/lemingshen/GPIoT

co-tuning (PECT) paradigm featuring a multi-path Low-Rank Adap-
tation (LoRA) pipeline. Unlike conventional LoRA tuning that tunes
adapters separately, our designed PECT paradigm enables collabora-
tive fine-tuning of multiple SLMs with a shared base model but with
different adapters, thereby mitigating the inconsistency issues and
facilitating knowledge sharing between SLMs. 3) Format incom-
patibility. Decomposed tasks are typically described in natural
language, while the expected inputs of CGSLM should be well-
structured. If we directly use the decomposed task descriptions as
prompts to generate code, CGSLM can not provide programs strictly
following user requirements (§ 2.2). To address this, we leverage
Chain-of-Thought (CoT) prompting [73] that instructs RTSLM to
transform the descriptions into well-structured specifications step
by step. As such, CGSLM can better handle the specifications to
provide IoT-specialized solutions.

To evaluate GPIoT, we also propose IoTBench, a benchmark to
quantify LLMs’ capabilities in synthesizing IoT-related programs.
Extensive experiments and a user study demonstrate that GPIoT
can generate code adopting more IoT-specialized algorithms and
outperform SOTA code LLMs in terms of task accuracy (more than
64.7% on average), memory usage (less than 310MB on average), and
user satisfaction. In summary, we make the following contributions:
• GPIoT presents the first code generation system tailored for
IoT application development featuring privacy-preserving local
SLMs tuned on IoT-specialized datasets.

• We create IoT domain text-generation datasets with a novel aug-
mentation method tailored for the unique characteristics of IoT
tasks, significantly enhancing the IoT knowledge comprehension
ability of our tuned SLMs. We also construct IoTBench to evaluate
the capability of LLMs in synthesizing IoT-specialized programs.

• We propose the PECT paradigm, a new LLM tuning method that
can collaboratively fine-tune multiple SLMs to mitigate their
domain misalignment with facilitated knowledge exchange.

2 BACKGROUND & MOTIVATION
We first revisit existing code LLMs to underscore the importance
of constructing tailored IoT-related LLMs. Then, we conduct some
preliminary experiments on existing LLM+RAG methods to further
motivate our work with several challenges we need to address.

2.1 Code LLM and LLM+RAG
Existing code LLMs aim to synthesize programs and enhance soft-
ware development efficiency and accuracy. While they performwell
on general and simple programming tasks (e.g., sorting algorithms),
they often struggle with complex problems in the IoT domain. For
example, when prompted to design an R-peak detection method
for electrocardiogram (ECG) data, existing code LLMs can only use
the find_peaks() function, which adopts a general peak detection
algorithm rather than a dedicated one tailored for ECG data (e.g.,
Pan-Tompkins [50]). The underlying reason is that IoT knowledge
and programs only occupy a small proportion of the training dataset
of code LLMs. As a result, despite being presented with abundant
IoT terminologies in the prompt, LLMs still tend to prioritize and
respond with more general words, due to their higher similarity
(shorter distance in Fig. 2(a)) within the vector representation space.

LLM+RAG methods address this by retrieving domain knowl-
edge for reference and establishing multiple cascaded agents to

https://github.com/lemingshen/GPIoT

GPIoT: Tailoring Small Language Models for IoT Program Synthesis and Development SenSys ’25, May 6–9, 2025, Irvine, CA, USA

Word Vector Space

Given an ECG data, implement a

R-peak detection algorithm.

ECG

Pan-Tompkins

R-peak

find_peaks()

Higher priority
Lower priority

(a) Terminologies in vector space

Retrieval
Agent

LLM + RAG
Multiagent

Planning
Agent

Coding
Agent

Debug
Agent

Success?

Y
N

Input Output

(b) General workflow of LLM+RAG
Figure 2: (a) Existing LLMs tend to prioritize general terms;
(b) LLM+RAG systems require multiple cascaded agents.

facilitate information transfer among modules. For example, in
Fig. 2(b), multiple LLM-based agents are employed for different
tasks during development (i.e., domain knowledge retrieval, task
planning, coding, and debugging). Sophisticated prompt design
and meticulously structured intermediate outputs are necessary to
ensure that one agent’s output can be accurately parsed and inter-
preted by another agent. We conduct a preliminary experiment by
prompting MapCoder [30], a multi-agent-based LLM+RAG frame-
work, to synthesize programs for R-peak detection. We repeatedly
generate 100 distinct versions of the programs and analyze them
through code review and execution. Surprisingly, we find that only
28% of the programs adopt appropriate IoT-related algorithms to
perform R-peak detection. This is because LLM+RAG requires so-
phisticated RAG design and user prompts. Otherwise, the retrieved
knowledge is less accurate and relevant to the IoT context, and
LLMs may fail to focus on the IoT domain and still provide sim-
ple and general solutions [75]. Moreover, this cascading process
inevitably introduces noise and propagates errors [76], leading to a
long self-recover time. More importantly, cloud LLMs suffer from
bad network conditions, high costs, and privacy concerns.

To overcome these challenges, GPIoT fine-tunes SLMs on IoT-
specialized text-generation datasets, as SLMs have smaller sizes and
can be locally deployed. Additionally, by steering the parameter
distribution towards the IoT domain via tuning, SLMs can focus on
IoT-related semantic context, generating highly relevant responses
that follow pre-defined formats with enhanced stability.

2.2 Preliminary Experiments & Findings
We conduct some preliminary experiments by separately fine-
tuning two SLMs on our manually constructed datasets (§ 4.1),
i.e., the task decomposition dataset (TDD) and the code generation
dataset (CGD). TDD aims to enhance TDSLM’s capability to break
a problem statement proposed by the user into multiple decomposed
tasks described in natural language. CGD aims to enhance CGSLM’s
ability to generate code & documentation for the user based on the
decomposed tasks. However, we find it extremely challenging to
ensure the correctness of the generated code. Note that we use
Llama2-13b [61] as the default SLM for demonstration purpose.
Lack of high-quality data. Directly fine-tuning SLMs incurs little
performance gain, even with data augmentation. We first deploy
four models: GPT-4o, the original SLM, the SLM tuned on TDD, and
the SLM tuned on augmented TDD via Evol-Instruct [78]. Then, we
randomly select three IoT problems from TDD and input them into
the four models to obtain a set of responses. Next, we measure the

Problem1 Problem2 Problem30.2

0.3

0.4

0.5

0.6

B
LE

U
 S

co
re

GPT-4o
Original

Simple Tuned
Augmented

(a) BLEU scores

Preprocess the
raw ECG data,
to enhance the
QRS complex
and suppress
noises by a set
of filtering steps
…… The output
should be …

Target
Preprocess the
ECG data ……

Input
- signal (array)

Output
- processed_signal
(array)

TDSLM Output CGSLM Input

(b) Requirement-specification gap

‘Figure 3: (a) Directly tuning SLM with simple augmentation
only yields small improvements; (b) Gap between SLMs.

similarity between the generated responses and the human-crafted
references as ground truth (decomposed tasks) using the BLEU score
[51], where a larger value indicates higher semantic similarity. As
shown in Fig. 3(a), GPT-4o achieves the highest score with an ac-
ceptable value for such a text-generation task. However, the scores
achieved by tuned SLMs increase slightly even with augmented
TDD. Further analysis reveals that the solutions provided by the
SLMs are either irrelevant to the IoT domain or contain halluci-
nations. This is because traditional augmentation methods (e.g.,
Evol-Instruct) focus on augmenting linguistic characteristics of the
original text data, which may fall short of effectively capturing
intricate relationships among IoT terminologies. This motivates us
to design an IoT-tailored text augmentation method to enhance the
quantity, quality, and diversity of the original dataset.
Domain misalignment. Since TDSLM and CGSLM are tuned on
distinct datasets for different tasks, domain misalignment occurs
when used in tandem. Specifically, we feed the task descriptions
generated by TDSLM into CGSLM to synthesize corresponding
programs for each sub-task. Surprisingly, we find that only 53.4%
of the programs can be successfully executed without bugs and
only 10.6% of the programs adopt IoT-specialized algorithms for the
IoT tasks. The main reason is that the two SLMs develop expertise
in different domains with knowledge inconsistency during tuning,
hindering the seamless integration of task decomposition and code
generation. As a result, the responses generated by TDSLM may
fall outside the scope that CGSLM can handle. This motivates us to
develop a knowledge-sharing strategy between the two SLMs during
tuning so that they can reach a consensus when handling IoT tasks.
Format incompatibility. TDSLM’s outputs (decomposed tasks) are
described in natural language while CGSLM’s inputs (task speci-
fications) should be well structured (Fig. 3(b)). When we directly
feed TDSLM’s output into CGSLM, only 23.6% of the synthesized
programs can be successfully executed. The rest exhibits higher
uncertainty with a lack of confidence in mapping the input task
specification to the desired code [86]. The reason is that CGSLM is
more sensitive to well-formatted inputs as it has been tuned on our
dataset with structured text. Though directly tuning TDSLM to gen-
erate well-structured task specifications can be a solution, we find
it challenging due to the limited language processing capabilities of
SLMs, which cannot be sufficiently enhanced through tuning alone.
This motivates us to develop a method to convert the task descriptions
in natural language into well-organized specifications.

To address the above challenges, we propose three key technical
modules, i.e., an IoT-oriented text data augmentation method, a
Parameter-Efficient Co-Tuning (PECT) paradigm with a multi-path
LoRA pipeline, and a requirement transformation module.

SenSys ’25, May 6–9, 2025, Irvine, CA, USA Leming Shen, Qiang Yang, Xinyu Huang, Zijing Ma, Yuanqing Zheng

Task Decomposition SLM

Research Papers

RAG Agent

Webpages &
Programs

</>

Code Generation SLM

Requirement for
 IoT Applications

Decomposed Task List
Task 1: Load Data

Requirement
Transformation SLM

Prompt 1

Prompt 2

Prompt n

……CoT-based
Prompting

Offline Tuning Stage Online Processing Stage

①

②

③

④

⑥

⑤

Task 2: Preprocessing

Task n: Output ResultsTask Decomposition

Task Specification List
Task Specification 1: ……

Task Specification 2: ……

Task Specification n: ……

Code Generation

Code & Doc.
A list of code

Related Doc. Result
⑦

LoRA Adapter

PECT

LoRA Adapter

PECT

IoT-Oriented
Augmentation

Figure 4: The system overview and workflow of GPIoT (All the local SLMs share the same foundation model).

RAG Agent

+

Technical Module List
Module 1: Load ECG Data

Module 2: Signal Preprocess

Module n: Output Results

Implementation Detail Extraction Prompt +

Model 1: Load ECG Data + Description

Sub-Task List for Module 1: Load ECG Data

— Task 1 [Download the MIT-BIH Dataset]
— Access the network and download the data

— Task 2 [Load the ECG Data from Local Disk]
— Write a script to load all the ECG data
— Implementation Workflow

— Step 1: Import the `wfdb` package and …

Technical Module
Extraction Prompt

Figure 5: Task decomposition dataset construction.

3 SYSTEM OVERVIEW
Fig. 4 illustrates the overall architecture of GPIoT, consisting of an
offline tuning stage and an online processing stage.
Offline Stage. The offline tuning stage (the left part in Fig. 4) con-
structs two IoT-specialized datasets and fine-tunes TDSLM and
CGSLM, which will be used for task decomposition and code gen-
eration in the online stage, respectively. We first build a RAG agent
to extract knowledge and programs from various IoT-related pub-
lic sources (e.g., websites and articles) to construct high-quality
datasets. Then, we augment the datasets by adopting our IoT-
oriented augmentation method (§ 4.1) to enhance their quantity,
quality, and diversity. Note that the RAG agent is only used for
high-quality dataset construction during the offline stage. With the
two augmented datasets, we fine-tune two SLMs via our PECT par-
adigm, where certain model parameters are collaboratively tuned
through a multiple-path LoRA pipeline with two projection layers
for task decomposition and code generation, respectively. Our PECT
paradigmmitigates the domain misalignment between TDSLM
and CGSLM with facilitated knowledge transfer and sharing.
Online Stage. The online stage (the right part in Fig. 4) aims to
synthesize IoT-specific programs based on the user requirement for
an IoT application development. Specifically, GPIoT first leverages
Task Decomposition SLM (TDSLM) to decompose the IoT appli-
cation into multiple manageable sub-tasks with detailed descrip-
tions (①∼②). Next, through CoT-based prompting techniques, the
sub-task descriptions will be gradually transformed into well-
structured specifications by Requirement Transformation SLM
(RTSLM) (③∼④). Next, for each sub-task, Code Generation SLM
(CGSLM) accordingly generates a code snippet with documentation
(⑤∼⑥). Users can execute the code sequentially to realize the IoT
application based on the instructions from the documentation (⑦).
SLM Considerations. We consider SLMs as open-source models
that can be locally deployed and operated efficiently on commodity
GPUs (e.g., RTX 4070 Ti). This aligns with the practical constraints
of normal users, where local models offer advantages in terms of
cost, privacy, and independence from the cloud. Note that although

there are three SLMs working simultaneously, they share the same
foundation model and differ only in some additional tunable parame-
ters, which only occupy 1% of all the parameters. Such a low-cost
tuning and inference process stems from our PECT paradigm, avoid-
ing significant overhead when deploying GPIoT on local devices.

4 SYSTEM DESIGN
4.1 Data Collection & Augmentation
Since there are no text-generation datasets in the IoT domain, we
need to first construct a task decomposition dataset (TDD) and a
code generation dataset (CGD). Note that our datasets contain Q&A
pairs in textual form, fundamentally differing from conventional
IoT datasets that typically contain pairs of sensor data and labels.
4.1.1 Task Decomposition Dataset. TDD contains pairs of
"problem statement → decomposed tasks", aiming to enhance TD-
SLM’s task decomposition ability for IoT problems. The construc-
tion process consists of three stages: raw IoT-related text data col-
lection, data formatting, and IoT-oriented text data augmentation.
Raw Data Collection. IoT-related research papers contain a huge
quantity of high-quality SOTA applications and algorithms. More-
over, the systems proposed are comprehensive and functional,
which can be decomposed into multiple modules with clear moti-
vation and implementation details. Therefore, we download IoT-
related papers from several public literature databases3 as our high-
quality data sources, covering a wide range of IoT topics, such as
communication, wireless sensing, edge computing, etc.
Data Formatting. We need to extract IoT knowledge from the
papers and format it to pairs of "problem statement → decomposed
tasks". Intuitively, we can regard the proposed system in each paper
as an IoT problem, with its technical modules as the corresponding
decomposed tasks. However, two challenges occur if we directly
use such "System → technical modules" pairs for tuning: 1) These
module descriptions are typically lengthy, which exceed the context
length of SLMs [11]. 2) These modules are still sophisticated, often
containing multiple sub-systems. TDSLM may struggle to extract
IoT-specialized technical concepts and accurately generate manage-
able components. To tackle this, our insight is that we regard each
module as an individual problem, which can be further decomposed
into several manageable sub-tasks. The disintegrated sub-tasks can
be easily handled by TDSLM with reduced context length.

Fig. 5 shows the entire process of how we extract pairs of "prob-
lem statement → decomposed tasks" from the papers. Specifically,
we first build a RAG agent by combining the downloaded papers
with an LLM (GPT-4o). Based on the provided context documents,

3We download papers from public databases via our institution’s certification. The
papers are for research only, adhering to ethical standards.

GPIoT: Tailoring Small Language Models for IoT Program Synthesis and Development SenSys ’25, May 6–9, 2025, Irvine, CA, USA

Technical Module Extraction Prompt

Context Document: PDF File
System Message
Based on the document, split the system
proposed in the paper into multiple
modules with detailed descriptions. You
must search through the document
repeatedly for detailed information.
The output must be in the following
Markdown format:
- Module 1: module name + description
- Module 2: module name + description

(a) Technical module extraction

Implementation Detail Extraction Prompt

Context Document: PDF File
System Message
Based on the document, summarize a
problem statement of the given technical
module and split it into a sub-task list with
implementation details. You must search
through the entire document thoroughly.
The output must be in the format of:
- Sub-Task 1 [Task Name]
- [Problem Statement]
- Implementation step 1 ……

(b) Implementation detail extraction
Figure 6: Prompts for paper information extraction.

Prompt for Augmentation
𝑨𝟏: Different sensor modality
𝑨𝟐: Different representations
𝑨𝟑: Heterogeneous resources

Augmentation 1 (𝒑𝒊𝟏)

Implement an IMU-based HAR system.

Original System Requirement

System Message
You are an IoT App developer

User Message (𝒑𝒊)
Implement a WiFi CSI-based
HAR system.

Augmentation 2 (𝒑𝒊𝟐)

Extract Doppler features from the
WiFi-CSI and implement a HAR system.

Augmentation 3 (𝒑𝒊𝟑)

Implement a WiFi CSI-based HAR
system and deploy the model on a
Jetson Nano board.

Figure 7: Examples of IoT-oriented data augmentation with
different modalities, representations, and resource budgets

.
we then prompt (Fig. 6(a)) the agent to split the proposed system
in the paper into multiple technical modules with detailed descrip-
tions. Next, for each technical module, we prompt (Fig. 6(b)) the
agent to further decompose it into several sub-tasks with detailed
implementation steps. As such, we encapsulate the problem state-
ment 𝑝𝑖 of each technical module and the corresponding sub-tasks
𝑡𝑖 into a Q&A pair 𝑄𝑖 to construct a raw dataset D𝑡 :

D𝑡 = {𝑄1,𝑄2, · · · ,𝑄𝑛𝑡 }, 𝑄𝑖 = (𝑝𝑖 , 𝑡𝑖) (1)
where 𝑛𝑡 is the total number of technical modules from all the
papers. Fig. 8(a) shows a data sample from the dataset. Note that
each sub-task is separated by a blank line, allowing us to parse
and split 𝑡𝑖 into multiple task description strings for further code
generation in a divide-and-conquer way.
IoT-Oriented Data Augmentation. As revealed in § 2.2, existing
text augmentation methods are ineffective in the IoT domain as
they focus on expanding language characteristics rather than IoT
knowledge. As a result, IoT terminologies are still assigned lower
priority during inference, preventing the tuned model from gener-
ating IoT-specialized solutions. To address this, we propose a novel
IoT-oriented data augmentation method that considers unique prop-
erties of IoT applications, i.e., sensor modality, data representation,
and system resource heterogeneity, as shown in Fig. 7.

Our augmentation considers three aspects: 1) Sensor modality.
For the same IoT problem, we can use different sensor modali-
ties. For instance, to implement human activity recognition (HAR),
we can utilize IMU data, WiFi CSI, etc. 2) Data representation. For
the same modality, we can leverage distinct data representations
to achieve the same task. For example, we can use WiFi CSI, 2D
spectrograms, or extracted Doppler features to implement HAR.
3) Resource heterogeneity. For the same task, various IoT devices
require heterogeneous system resources. When deploying an AI
model, smartphones typically have less memory than PCs, requir-
ing model optimization methods. Based on the three aspects, we
prompt (Fig. 8(b)) GPT-4o to rewrite and augment each problem
statement from D𝑡 . To generate reference decomposed tasks, we
build a search agent to retrieve relevant IoT domain knowledge and

Task Decomposition Data Example

System Message
You are an IoT application developer.
Decompose the problem statement into a
task list with implementation details. The
output must be in the format of:
- Sub-Task 1 [Task Name]

- Implementation step 1 …….

User Message (𝑝𝑖𝑗)

<Problem Statement>

Assistant Message (𝑡𝑖𝑗)

- Sub-Task 1 [Task Name]
- Implementation step 1 ……

(a) Task decomposition data sample

Sensor Data Modality Augmentation Prompt

System Message
You are a professional prompt writer.
Rewrite the prompt into a diverse version
by replacing the sensor data modality
with a different one (e.g., WIFI --> IMU).

Direct output three different versions of
the rewritten prompt separated by a
blank line in the following format:

<rewritten prompt1>

<rewritten prompt2>

User Message (𝑝𝑖𝑗)

<Problem Statement>

(b) Augment sensor modality
Figure 8: (a) Tuning data sample for task decomposition. (b)
Prompt for sensor modality augmentation.

API Reference - A Function from SciPy

find_peaks(x, height=None, threshold=None)

This function takes a 1-D array and finds all local maxima
by simple comparison of neighboring values.
Parameters
- x (array): A signal with peaks.
- height (int): required height of peaks.
- threshold (int): required threshold of peaks
Returns
- peaks (array): indices of peaks in x.
Examples

Universal Non-Uniform
Random Number Sampling

Introduction
Random variate generation
deals with algorithms to
generate random variates
from various distributions ……
Workflow
First ……, Then ……, Finally ……
A Simple Example

Example Gallery
A Usage Sample

>>> import numpy as np
>>> from scipy.signal import find_peaks
>>> x = np.random.rand(2000)
>>> peaks, _ = find_peaks(x, height=0)

>>> import scipy
>>> x = ……
>>> output = ……

Figure 9: An example of a Python package’s website.
prompt it to produce results. We then manually filter out incorrect
results and craft the formats (i.e., each sub-task is separated by a
blank line as aforementioned). The augmented dataset D′

𝑡 is:

D′
𝑡 =

3⋃
𝑗

{ (𝑝𝑖 𝑗 , 𝑡𝑖 𝑗) | 𝑝𝑖 𝑗 = 𝐴𝑗 (𝑝𝑖), 𝑡𝑖 𝑗 = 𝐺 (𝑝𝑖 𝑗) }, ∀𝑝𝑖 ∈ D𝑡 (2)

where 𝐴 𝑗 (·) is the 𝑗-th type of augmentation operation and 𝐺 (·) is
the black-box function of GPT-4o.
Remark.We take the diversity of both language expression and
IoT characteristics into account, demonstrating significant perfor-
mance improvement in task decomposing (§ 6.5). Note that the data
collection and augmentation processes are both performed offline.
4.1.2 Code Generation Dataset. CGD contains pairs of "task
specification→ code & documentation", aiming to enhance CGSLM’s
ability in generating IoT-related code for decomposed tasks. The
data construction includes two stages: raw data collection and target
diversity-aware augmentation for different code generation tasks.
Raw Data Collection. Open-source IoT-related Python4 packages
(e.g., SciPy [64]) contain abundant hand-crafted IoT algorithms and
applications with high performance, which can serve as our data
sources. Thus, we first collect numerous public repositories from
GitHub and extract Python packages they used, covering areas of
signal processing, machine learning, and data processing (IoT data
I/O and visualization). We then build a web crawler to automatically
retrieve information from each package’s official website.

A package’s website (Fig. 9) typically contains two parts: 1) API
reference includes a list of modules (i.e., functions and classes) with
comprehensive guidance on how to use them effectively in code.
For example, find_peaks() is a function from the SciPy package,
which identifies the local maxima (peaks) in an input signal array
and returns the indices of the peaks. We denote the detailed in-
formation of each module as its metadata,𝑚𝑖 . 2) Example gallery

4We focus on Python since it is a cross-platform programming language.

SenSys ’25, May 6–9, 2025, Irvine, CA, USA Leming Shen, Qiang Yang, Xinyu Huang, Zijing Ma, Yuanqing Zheng

Module Description Data

System Message
You are a Python programmer in signal
processing and machine learning. Based
on the user instruction, generate detailed
descriptions for the module.

User Message (𝑡𝑖1)

Provide a detailed description of the
find_peaks() from the Python
package named SciPy.

Assistant Message (𝑚𝑖1)

The metadata of the module.

(a) Module description

Module Implementation Data

System Message
You are a Python programmer in signal
processing and machine learning. Based
on the user instruction, generate Python
code with detailed comments and doc.

User Message (𝑡𝑖2)

Write some Python code with comments
and documentation to perform peak
detection by using the find_peaks()
from a Python package named SciPy.

Assistant Message (𝑐𝑖 & 𝑑𝑖)
Corresponding code and documentation.

(b) Module implementation

Well-Structured Task Specification (Prompt)

Target
Write some code and documentation to
create a universal non-uniform random
number generator to sample random
variates from a wide variety of univariate
continuous and discrete distributions.

Input Specification
- numbers (arr): a stream of uniform

random numbers.

Output Specification
- output (arr): random variates sampled

from the specified distribution.

(c) Task specification
Input Embedding 𝑿

𝑊𝑞 𝑊𝑘 𝑊𝑣

Q K V

Attention

Add & LayerNorm

FFN

Add & LayerNorm

Out

Input 𝑿

𝑊𝑣
𝐴

𝐵

𝑉′

W
Projection

matrix

LoRA
adapters

LoRA Tuning

(d) Traditional LoRA tuning
Figure 10: (a) & (b) Two tuning data samples. (c) Well-structured task specification. d) Traditional LoRA tuning.

provides practical usage samples of how to use various modules and
features of the package to implement specific algorithms. For in-
stance, a usage sample provides detailed documentation with code
about performing universal non-uniform random number sampling
using the SciPy package in an end-to-end manner. We denote the
detailed information of each usage sample as its metadata, 𝑢 𝑗 . By
combing these two types of metadata, we form a raw dataset D𝑐 :

D𝑐 = {𝑚𝑖 | ∀𝑖 ∈ {1, 2, · · · , 𝑛𝑚 }} ∪ {𝑢 𝑗 | ∀ 𝑗 ∈ {1, 2, · · · , 𝑛𝑢 }} (3)

where 𝑛𝑚 and 𝑛𝑢 is the total number of modules and usage samples.
Target Diversity-Aware Augmentation. This augmentation aims
to enhance the diversity of the metadata in D𝑐 . We target each
module in the packages for two text-generation tasks: 1) Module
Description: providing detailed descriptions of a module and 2)Mod-
ule Implementation: writing code & documentation to demonstrate
usage samples of the module. aSince the example gallery already
contains abundant algorithms with sample code and detailed de-
scriptions, they can be directly used as code generation tasks.
1) Module Description. We format the task specification to "Pro-
vide detailed descriptions of <module> from <package>." The cor-
responding reply contains the module metadata in a pre-defined
format. This Q&A mapping relation from a task specification 𝑡𝑖 to a
module description𝑚𝑖 is expressed as:

D1 = {𝑡𝑖 →𝑚𝑖 } (4)
Such a "task specification→ module description" mapping can teach
CGSLM to be familiar with the module’s information, strengthen-
ing the semantic correlation between the module’s name and the
detailed descriptions. Fig. 10(a) illustrates a data sample from D1.
2) Module Implementation. We format the task specification to
"Write some Python code with comments and documentation to
perform <target> by using <module> from <package>." The cor-
responding reply contains the sample code and documentation that
provides the workflow and guidance on how to execute the code.
To obtain well-structured documentation, we prompt GPT-4o to
format the module’s metadata into Markdown. This Q&A mapping
relation from a task specification 𝑡𝑖 to the corresponding module
implementation (i.e., code 𝑐𝑖 and documentation 𝑑𝑖) is:

D2 = {𝑡𝑖 → (𝑐𝑖 , 𝑑𝑖) | 𝑑𝑖 = 𝐺 (𝑚𝑖) } (5)

Such a "task specification → module implementation" mapping rela-
tionship aims to enhance CGSLM’s capability in generating code
and documentation according to the module specification. Fig. 10(b)
shows a data sample from D2.
3) Example Implementation.We format the task specification to a
well-structured Markdown format as shown in Fig. 10(c), including
the task target and the I/O specifications for the expected code.
Correspondingly, we prompt GPT-4o to convert the usage sample’s

metadata into well-structured documentation. This Q&A mapping
relation from a task specification 𝑡 𝑗 to the code 𝑐 𝑗 and documentation
𝑑 𝑗 can be expressed as:

D3 = {𝑡 𝑗 → (𝑐 𝑗 , 𝑑 𝑗) | 𝑑 𝑗 = 𝐺 (𝑢 𝑗) } (6)

This aims to enhance CGSLM’s ability in generating IoT-related
code and detailed documentation following well-structured task
specifications. Ultimately, by concatenating all three augmented
datasets, the final CGD D′

𝑐 becomes:

D′
𝑐 = D1{𝑡𝑖 →𝑚𝑖1 } ∪ D2{𝑡𝑖 → (𝑐𝑖 , 𝑑𝑖) } ∪ D3{𝑡 𝑗 → (𝑐 𝑗 , 𝑑 𝑗) } (7)

4.1.3 IoTBench. To evaluate LLMs’ abilities in task decomposi-
tion and code generation for IoT applications, we create IoTBench, a
benchmark of text-generation tasks in the IoT domain. Specifically,
we choose 100 samples from TDD and CGD with manually created
test cases, covering various IoT topics (e.g., signal processing, edge
AI, etc.). All the selected data samples are first manually filtered
to ensure correctness and relevance to the IoT domain. Then, we
format the sub-tasks separated by a blank line in between. Note that
although many SOTA benchmarks (e.g., HumanEval [10]) can also
evaluate LLMs’ code generation abilities, they are not tailored to
IoT tasks. Besides, the data in IoTBench is excluded from the tuning
processes (§ 4.2) to test the generalizability of the tuned SLMs.

4.2 Parameter-Efficient Co-Tuning (PECT)
With the two augmented datasets (D′

𝑡 and D′
𝑐), our next step is

to fine-tune TDSLM and CGSLM to enhance their ability in task
decomposition and code generation, respectively. In the following,
we first introduce the traditional LoRA tuningmethod [27] for SLMs,
and then explain our Parameter-Efficient Co-Tuning paradigm.
4.2.1 LoRA Tuning. Fig. 10(d) shows the Low-Rank Adaptation
(LoRA) tuning process of a Transformer block [63]. Specifically,
each Transformer block in an LLM contains two main components:
a self-attention mechanism and a feed-forward network (FFN), both
of which are followed by residual connections and layer normaliza-
tion. The self-attention features three tunable weight matrices (𝑊𝑞 ,
𝑊𝑘 , and𝑊𝑣) to capture contextual relationships between input em-
beddings, while the FFN processes the outputs from the attention
mechanism to refine the feature representations. In conventional
LLM full-tuning, the entire weight matrices are updated, leading to
extensive GPUmemory requirements and high computational costs.
Instead of fully updating the weight matrices, LoRA reduces the
number of tunable parameters [15, 18], where two low-rank matri-
ces 𝑨 and 𝑩 (i.e., LoRA adapters) are inserted alongside the weight
matrix. Given an input 𝑿 , the tuning process can be expressed as:

𝑽 ′ = (𝑾𝑣 + 𝑩𝑨) · 𝑿 (8)

GPIoT: Tailoring Small Language Models for IoT Program Synthesis and Development SenSys ’25, May 6–9, 2025, Irvine, CA, USA

𝑥2

Input Embedding (𝑿)

𝑊𝑞 𝑊𝑘 𝑊𝑣

Q K V

Attention

Add & LayerNorm

FFNProjection 2 Projection 1

Add & LayerNorm
Further Process

𝑥1

𝐿2 ⋅ 𝐿1 ⋅

Task Decomp.
Path

Code Gen. Path

Co-Tuning Path

Shared Path

LoRA Params

Skip Connection

𝑥1 𝑥2

Figure 11: PECT in one Transformer block with both inde-
pendently and collaboratively tuned LoRA adapters.
This reduces the computational burden by only updating the smaller
low-rank matrices 𝑨 and 𝑩, significantly cutting down resources.

However, as demonstrated in § 2.2, domain misalignment arises
when separately tuning TDSLM and CGSLM using this vanilla LoRa
method. This is because they focus on two distinct text-generation
tasks with different semantic attention, thereby hindering GPIoT
from synthesizing IoT-related programs. To tackle this issue, we
propose a parameter-efficient co-tuning (PECT) paradigm. Un-
like conventional LoRA tuning that tunes adapters separately,
PECT enables collaborative fine-tuning of several SLMs with
a shared base model but with different LoRA adapters. PECT
features a Multi-Path LoRA Pipeline (MPLP) and two lightweight
projection layers, which can promote information sharing between
TDSLM and CGSLM, thereby narrowing the semantic comprehen-
sion gap between task decomposition and code generation.
4.2.2 Multi-Path LoRA Pipeline. MPLP selects a subset of
shared LoRA adapters to be collaboratively tuned by TDSLM and
CGSLM, with another adapter set independently tuned.
Pipeline Construction. In the lower part of Fig. 11, we create
three pipelines of LoRA adapters in each Transformer block. Two
pipelines (the orange one and the green one) are independently
tuned by TDSLM and CGSLM with respect to TDD and CGD. The
other pipeline (the gray one) is co-tuned on both TDD and CGD.
For example, given a data sample from TDD, only the orange LoRA
adapters and gray LoRA adapters are updated, as shown in Fig. 11.
Note that we only assign the shared adapters beside the key and
value weight matrices (𝑾𝑘 ,𝑾𝑣). The insight behind this is that the
value vector provides the information to be activated based on the
key vector [63]. In other words, themapping from problem statement
to decomposed tasks and the mapping from task specification to code
& documentation are determined by the key and value vectors in
TDSLM and CGSLM, respectively. Domain misalignment is thus
caused by such differentmapping relations during tuning on distinct
datasets with disparate semantic focuses. Therefore, by co-tuning
the shared adapters integrated into the key and value vectors, the
mapping relations will be shared between the two SLMs, allowing
TDSLM’s outputs to align with CGSLM’s scope.
Co-Tuning. In Fig. 11, we designate the orange line as the task
decomposition path (TDP), through which only data from TDD will
pass. The green line is the code generation path (CGP), through
which only data from CGD will pass. The grey line represents
the co-tuning path, through which all data will pass. During co-
tuning, the LoRA adapters will be tuned either independently or

User Target Extraction Prompt

System Message
You are a skilled IoT application developer,
especially in writing well-structured task
specifications. Given the task description,
define and directly output the objective of
the task. Example: develop a R-peak
detection algorithm for ECG data.

User Message (𝑡𝑖)
Task 1 [Task Name]
- Implementation step 1
- Implementation step 2 ……

(a) User target extraction

Input/Output Specification Extraction Prompt

System Message
You are a skilled IoT application developer,
especially in writing well-structured task
specifications. Given the task description,
define the input/output specifications for
the expected code. The output must be in
the following format:
- Param 1 (type): description ……

User Message (𝑡𝑖)
Task 1 [Task Name]
- Implementation step 1 ……

(b) I/O specification extraction
Figure 12: CoT-based prompts for RTSLM.

collaboratively, depending on the path they occupy. Specifically,
take the adapter alongside the projection matrix𝑾𝑘 as an example,
the key vectors after projection in the two paths are calculated by:

𝑲1 = (𝑾𝑘 + 𝑩1𝑨1 + 𝜆 · 𝑩𝑐𝑨𝑐) · 𝑿
𝑲2 = (𝑾𝑘 + 𝑩2𝑨2 + (1 − 𝜆) · 𝑩𝑐𝑨𝑐) · 𝑿

(9)

where𝑿 is the input text embedding, 𝑲1 and 𝑲2 are the key vectors
within TDP and CGP, respectively. 𝑩1𝑨1 and 𝑩2𝑨2 are the param-
eters of LoRA adapters independently tuned within the two paths,
respectively. 𝑩𝑐𝑨𝑐 are the LoRA adapters collaboratively tuned
by the two paths. 𝜆 is a hyper-parameter to balance the data flow
between the two paths. During the co-tuning process, we first ran-
domly sample data from TDD and CGD. Next, if the data is sampled
from TDD, it will pass through TDP; otherwise, it will pass through
CGP.We then calculate the loss and update the corresponding LoRA
adapters based on the source of the data sample.
Remarks. By orchestrating the independent and collaborative tun-
ing paths, MPLP dismantles the information barrier between TD-
SLM and CGSLM, fostering their consensus during inference and
thereby alleviating the misalignment issue.
4.2.3 Projection Layers. To further enhance knowledge sharing
between the two SLMs during tuning, we create two projection
layers for the two paths. We place the projection layers in parallel
with the FFN layers in the Transformer block. As such, they can
serve as extra FFNs that apply non-linear transformations to the
attention representations, thereby enhancing token-level feature
extraction and increasing the complexity of the model’s learning
capabilities. By receiving representations from the other path with
enhanced non-linearity, the cross-domain IoT knowledge compre-
hension capabilities of the two SLMs will be further strengthened.
Specifically, take TDP as an example, as shown in the upper part of
Fig. 11, with the obtained value (denoted as 𝑥1) from the LayerNorm
in TDP, we feed it into a projection layer 𝐿1 (·). The output is then
added with the FFN’s output 𝐹 (𝑥2) and 𝑥2 in CGP. The sum will be
sent to the next Transformer block for further processing. Such a
knowledge transfer process can be expressed as:

𝑥 ′
1 = 𝑥1 + 𝐹 (𝑥1) + 𝛾 · 𝐿2 (𝑥2)

𝑥 ′
2 = 𝑥2 + 𝐹 (𝑥2) + (1 − 𝛾) · 𝐿1 (𝑥1)

(10)

where 𝑥 ′1 and 𝑥
′
2 are the final output of the two paths. 𝑥1 and 𝑥2 are

the input attention representations from TDP and CGP, respectively.
𝐹 (·) represents the FFN layer, 𝐿1 (·) and 𝐿2 (·) are the projection
layers in the two paths, and 𝛾 is a hyper-parameter to balance
the knowledge-sharing between the two paths. Note that each
projection layer has the same architecture as the FFN, consisting of
two fully connected layers and a non-linear SwiGLU function [54].
Remarks. By combining independent and collaborative tuning
of LoRA adapters with the projection layers, PECT optimizes the
task-specific performance of TDSLM and CGSLMwhile minimizing
domain conflicts. As a result, the decomposed tasks generated by

SenSys ’25, May 6–9, 2025, Irvine, CA, USA Leming Shen, Qiang Yang, Xinyu Huang, Zijing Ma, Yuanqing Zheng

TDSLM will have closer semantic alignment with CGSLM and thus
can be better handled. Note that during both tuning and inference,
the SLMs share the same foundation model architecture, with the
only difference being the LoRA parameters shown in Fig. 11. There-
fore, our proposed PECT paradigm fundamentally differs from those
traditional PEFT approaches that tune SLMs separately.
4.3 Requirement Transformation
When cascading TDSLM and CGSLM together, a huge gap ex-
ists between TDSLM’s outputs (decomposed task descriptions) and
CGSLM’s inputs (task specifications). The task descriptions are
typically natural language while the task specifications are well-
structured. Directly feeding the task descriptions into CGSLM will
lead to sub-optimal performance of the generated code. To fill this
gap, we leverage RTSLM to transform the descriptions into well-
structured specifications. Considering that RTSLM has limited IoT
knowledge comprehension ability, we enhance it with RAG and
several CoT-based prompts to perform requirement transformation.
RAGConstruction. To enhance RTSLM’s ability in understanding
IoT domain knowledge during requirement transformation, we first
transform all the downloaded papers into a text embedding database.
Then, armed with such an IoT knowledge database, we build a RAG
agent based on RTSLM to retrieve relevant context for reference. As
such, RTSLM can better comprehend and handle IoT terminologies
in the task descriptions during requirement transformation.
CoT Prompting. Fig. 10(c) shows an example of a well-structured
task specification for code generation, consisting of three parts:
task target, input and output specifications of the expected code.
For each decomposed task 𝑡𝑖 generated by TDSLM, we prompt the
agent to generate such well-structured specifications step-by-step.
Specifically, we first prompt (Fig. 12(a)) the agent to summarize a
target for the task. Next, we further instruct (Fig. 12(b)) the agent to
generate a list of parameter descriptions for the input and output of
the expected code. Each single parameter description item contains
the parameter name, the parameter type, and a brief explanation of
its meaning. For example, "signal (numpy.ndarray): the raw ECG
data collected from patients with noises." Finally, RTSLM reorga-
nizes and formats the above information into a well-structured task
specification, which will be further handled by CGSLM to generate
corresponding code snippets and documentation.
Remarks. Note that tuning is excluded in this process since it only
needs basic language comprehension and processing capabilities
of RTSLM. Therefore, RTSLM shares the same base model without
additional tunable LoRA parameters to perform the transformation.

5 EXPERIMENT SETUP
5.1 Implementation
SystemConfigurations.WedeployGPIoT on an edge PC equipped
with an RTX 4090 GPU (24 GB). We use selenium [45] to create a
web crawler for data retrieving from public websites. To perform
data formatting and augmentation, we construct an agent based
on GPT-4o and LangChain [8]. For SLM tuning, we use a high-
performance cloud server with an NVIDIA A100 GPU (80 GB).
Hyper-parameters. TDD contains 36,098 pairs of "problem state-
ment → decomposed tasks". CGD contains 35,419 pairs of "task
specification → code & documentation". Llama2-13b [61] with INT8
quantization serves as the foundation model and is fine-tuned via
LoRA [27], with a rank of 64 and a dropout rate of 0.1. The number

of tuning epochs is 5, with an initial learning rate of 0.0001, varied
by a cosine learning rate scheduler. The 𝜆 in Eq. 9 and the𝛾 in Eq. 10
are both set to 0.5 by default. The tuning process takes around 80
GPU hours. Since TDSLM, RTSLM, and CGSLM share the same
foundation model, only about 16 GB of GPU memory is needed for
the whole system, which is affordable for a commodity GPU [52].

5.2 IoT Applications
Considering the different technologies required during develop-
ment, we select three IoT applications, focusing on healthcare and
edge computing. 1) Heartbeat Detection (HD) is essential for
continuously monitoring patient vitals with enhanced healthcare
and ensuring timely intervention in case of abnormalities [47]. We
instruct GPIoT to develop a heartbeat (R-peak) detection algorithm
and test it on the MIT-BIH dataset [44]. 2)HumanActivity Recog-
nition (HAR) [3, 7, 31–33] deployed on edge devices is important
for real-time analysis of daily human activities. We instruct GPIoT
to develop a WiFi-based HAR model using the WiAR dataset [23]
and deploy it on a Jetson Nano board that has limited resources [40].
3)Multimodal HAR leverages different sensors to capture comple-
mentary information, thereby enhancing HAR systems’ robustness
and versatility [19]. We instruct GPIoT to construct a multimodal
HAR model based on the Harmony dataset [49], which contains
three sensor modalities: audio [68], depth camera, and radar [13].
Notes: HD requires signal processing methods, HAR demands
technologies in both signal processing and machine learning, and
multimodal HAR necessitates advanced multimodal processing
algorithms. Though we use HD as an example for demonstration
throughout the paper, all the tasks are unseen to GPIoT.

6 EVALUATION
6.1 Metrics
We compare the programs synthesized by GPIoT and several base-
lines by measuring the following evaluation metrics.
HD. 1) Precision: The fraction of correctly detected R-peaks out of
all detected peaks: 𝑇𝑃

𝑇𝑃+𝐹𝑃 . 2) Recall rate: The proportion of correctly
detected R-peaks out of all actual R-peaks: 𝑇𝑃

𝑇𝑃+𝐹𝑁 . The larger these
two metrics are, the more accurate the heartbeat detection becomes.
HAR. 1) Classification accuracy: The portion of the test data that is
correctly classified based on the label. A higher accuracy implies a
more robust and accurate HAR model. 2) GPU memory usage: The
amount of GPU memory used during model inference. 3) Inference
time: The time it takes from feeding the data into the code to the
generation of the recognition result. The less memory and inference
time consumed, the more resource-efficient the HAR model is.

6.2 Baselines
Given the same user problem, we input it into the following base-
lines to compare their performance with GPIoT (GT). 1) GPT-4o
(G4) [2] is an advanced LLM from OpenAI, optimized for instruc-
tion following and code generation tasks. 2) DeepSeek-Coder
(DC) [22] is a high-performance code LLM, particularly effective in
understanding and generating programming code across various
domains. 3) CodeLlama-34b (CL) [53] is a specialized version of
the Llama designed to generate, understand, and assist with coding.
4) WizardCoder-33b (WC) [43] incorporates complex instruction
fine-tuning by adopting evolving instructions. 5) CodeQwen-7b

GPIoT: Tailoring Small Language Models for IoT Program Synthesis and Development SenSys ’25, May 6–9, 2025, Irvine, CA, USA

Heartbeat Detection (User Input)

Given the ‘MIT-BIH’ Arrhythmia Dataset,
write Python code to perform R-peak
detection for all the signal records in the
dataset. The code should also output the
detection accuracy for each data.

Code Input
1. The local file path to the dataset
Code Output Format
Case {ECG data record name}
Detection accuracy: 91% ……

Remarks
The dataset folder contains several data
samples, each of which contains four files,
i.e., ‘.atr’, ‘.dat’, ‘.hea’, and ‘.xws’.

(a) Problem statement for HD

Human Activity Recognition (User Input)

Given the WiFi-based Activity Recognition
(WiAR) dataset, write some Python code
to perform human activity recognition.
First split the dataset into ‘train’ and ‘test’
parts. Then, train an AI model to output
the recognition accuracy of the test data.

Code Input
1. The local file path to the dataset
Code Output Format
The average recognition accuracy: 91%

Remarks
The dataset is a NumPy array with a shape
of (450, 90, 250), containing 15 activities
with each repeated 30 times.

(b) Problem statement for HAR
Figure 13: Problem statements of the two applications (HAR
and multimodal HAR share a similar prompt).

(CQ) [5] is the Code-Specific version of Qwen1.5, which is a decoder-
only LLM pre-trained on a large amount of data of programs. 6)
GitHub Copilot (GC) [21] is an AI-powered code generation tool
that assists developers by suggesting code snippets and functions.
7)MapCoder (MC) [30] is an LLM+RAG-based code generation
framework that cascades multiple LLM-based agents to solve com-
petitive problems, where GPT-4o is selected as the built-in LLM.

We access GPT-4o and DeepSeek-Coder via API keys, interact
with GitHub Copilot via Visual Studio Code’s chat window, and
deploy the rest on an edge server. Note that to our best, currently
there is no LLM-based program synthesis system tailored for IoT
application development. Therefore, we choose some SOTA code
generation LLMs and systems as our baselines.
6.3 Application Evaluation
With the designed two problem statements (Fig. 13) for the three
IoT applications, we input them into GPIoT and the baselines to
synthesize 20 different programs for each task. We then evaluate
their performance based on the metrics described in § 6.1.
6.3.1 HD. As shown in Fig. 14, the code generated by GPIoT sig-
nificantly outperforms all the baselines, with an average precision
gain of 64.7% and an average RR increase of 16.9%. It’s also worth
noting that CodeLlama, WizardCoder, and CodeQwen achieve mod-
erate RR (above 80%) but exhibit lower precision. With further
analysis of the code, we find that they all adopt a simple peak detec-
tion function, scipy.signal.find_peaks(), which typically fails
when handling abnormal ECG data from patients. As a result, the de-
tection results contain numerous false positives with low precision.
Additionally, after reviewing the code generated by MapCoder, we
observe that it incorporatesmore advanced heartbeat signal process-
ing algorithms (e.g., bandpass filtering and adaptative thresholding).
However, the final program exhibits a significant performance drop
compared with other baselines. This is because heartbeat detection
is a relatively simple IoT application that does not require highly
sophisticated planning and iterative debugging. Integrating many
advanced algorithms into a simple signal-processing program may
lead to inconsistency issues. In other words, the heartbeat signal
may be over-processed by these algorithms, leading to degraded
performance. [24, 60]. On the contrary, the code generated by GPIoT
utilizes dedicated algorithms (e.g., Pan-Tompkins) for R-peak de-
tection due to embedded IoT domain knowledge during tuning,
consistently achieving high precision and RR.
6.3.2 HAR. In this evaluation, for all the generated HAR mod-
els, we set the training epochs to 10 and the batch size to 32 for

80
90

100

GT G4 DC CL WC CQ GC MC
System name

0
10
20

Pr
ec

is
io

n
(%

)

(a) Precision

80
90

100

GT G4 DC CL WC CQ GC MC
System name

0
10
20

R
ec

al
l r

at
e

(%
)

(b) Recall rate
Figure 14: The overall performance of HD.

80
90

100

GT G4 DC CL WC CQ GC MC
System name

10
20
30

A
cc

ur
ac

y
(%

)

(a) Classification accuracy

GT G4 DC CL WCCQ GCMC
System name

100

300

500

700

900

M
em

or
y

(M
B

)

0

0.7

1.4

2.1

2.8

Ti
m

e
(m

s)GPU memory
Inference time

(b) GPU memory & inference time
Figure 15: The overall performance of HAR.

a fair comparison. Besides, during our implementation, we find
that after around 15 training epochs, all the models gradually con-
verge. Therefore, we compare the model performance at the 10th
epoch. As shown in Fig. 15(a), the program synthesized by GPIoT
achieves a 17.2% higher accuracy with 47.8% less GPU memory and
38.3% shorter inference time on average. By analyzing the generated
code, we find GPIoT applies: 1) a data preprocessing method, But-
terworth low-pass filtering, on the WiFi data, considering that the
low-frequency components of WiFi CSI are primarily influenced by
human activities [69]. 2) an augmentation method tailored for IoT
data (e.g., time-frequency masking [87]) on the WiFi signal to fur-
ther enhance the diversity of the dataset. 3) a CUDA optimization
mechanism [12] to reduce GPU memory usage while enhancing
runtime efficiency. In contrast, the baselines directly input raw
WiFi data into HAR models without GPU optimization, leading
to diminished performance and heightened memory consumption.
Moreover, the error bar of GPIoT is smaller than that of the base-
lines, indicating that GPIoT generates more stable responses with a
more robust performance of the synthesized program. Note that MC
can synthesize programs with competitive performance since HAR
is a more complex application. Such advancements of GPIoT origi-
nate from our meticulously crafted IoT-specialized datasets and the
PECT paradigm, which embeds abundant IoT domain knowledge
from our datasets into the tuned SLMs for more consistent outputs.

Additionally, considering that our HAR model is deployed on
edge devices with various resource constraints [39, 55, 57, 66, 67],
we involve different resource requirements in the prompts for
the generated code to facilitate a more comprehensive evaluation.
Specifically, we first design a base prompt: "I need to deploy the
HAR model on Jetson Nano" (P1) without any resource specifi-
cations. Based on P1, we then create three variations by adding
different resource constraints: "Do not consider any resource con-
straints but only model accuracy" (P2), "The GPU memory usage
should not exceed 200 MB" (P3), and "The GPU memory should
not exceed 50 MB" (P4). We then instruct GPIoT to synthesize 20
different versions of programs using each of the prompts above.
After executing the programs with the same configurations, we
record the average classification accuracy and GPU memory usage,
as shown in Fig 19(a). We find that: 1) Given P2, GPIoT can con-
struct an AI model with a large number of parameters to achieve
ultimate performance, with its classification accuracy approaching
nearly 100%. 2) Given P3, GPIoT can adopt a smaller model within

SenSys ’25, May 6–9, 2025, Irvine, CA, USA Leming Shen, Qiang Yang, Xinyu Huang, Zijing Ma, Yuanqing Zheng

GT G4 DC CL WC CQ GC MC
System name

10
20
30
40
50
60

A
cc

ur
ac

y
(%

)

(a) Classification accuracy

GT G4 DC CL WC CQ GC MC
System name

0

1

2

3

4

M
em

or
y

(G
B

)

0

1

2

3

4

Ti
m

e
(m

s)

GPU memory
Inference time

(b) GPU memory & inference time
Figure 16: The overall performance of multimodal HAR

GT G4 DC CL WC CQ GC
System name

0.3
0.4
0.5
0.6
0.7
0.8

B
LE

U

2.5
3
3.5
4
4.5
5

ST
C

BLEU
STC

(a) The BLEU score

0.9
0.95

1.0

GT G4 DC CL WC CQ GC
System name

0.3
0.35

0.4FC
R

(b) The Format Correctness Rate
Figure 17: Breakdown evaluation on TDSLM.

the resource budget (i.e., GPU memory usage not exceeding 200
MB) with a slight performance drop. 3) Given P4, GPIoT employs
a highly optimized model requiring only approximately 50 MB
of GPU memory, resulting in an acceptable accuracy drop of 5%.
These results demonstrate that GPIoT can generate code tailored to
different resource budgets, stemming from our IoT-Oriented Data
Augmentation method, which augments data samples considering
resource heterogeneity of target devices in IoT applications.

6.3.3 Multimodal HAR. We further instruct GPIoT to synthesize
programs for the multimodal HAR application, aiming to evalu-
ate its programming ability for more complex tasks. As shown in
Fig. 16, compared with the baselines, the program synthesized by
GPIoT achieves an average accuracy improvement of 13.44% while
requiring moderate GPU memory and inference time. After review-
ing the source code, we find that both GPIoT and the baselines
train three encoders to first extract useful features from different
modalities, followed by a classifier to recognize the correspond-
ing activity. However, the program synthesized by GPIoT adopts
some model optimization methods (e.g., quantization or pruning)
and data augmentation methods tailored for IoT sensor data (e.g.,
time-frequency masking). As such, the synthesized program can
train a memory-optimized model while maintaining high classifica-
tion accuracy. These results indicate that, benefiting from our SLM
tuning, the program synthesized by GPIoT can incorporate more
IoT-specific data processing and model optimization algorithms,
thereby achieving high performance even for multimodal HAR.

6.4 Breakdown Evaluation
We separately evaluate TDSLM and CGSLM on IoTBench to explore
the effectiveness of fine-tuning in the IoT domain.

6.4.1 Metrics. We adopt different metrics for the two SLMs.
TDSLM. 1) BLEU : we measure the BLEU score [51] between the
generated decomposed tasks and the reference from IoTBench. A
larger BLEU score indicates higher semantic similarity and higher
task decomposition quality. 2) Format Correctness Rate (FCR): the
portion of TDSLM’s outputs that correctly separate each decom-
posed task with a blank line for the convenience of further pro-
cessing. This aims to quantify TDSLM’s instruction-following and
text-formatting abilities. 3) Sub-Task Completeness (STC): we invite
10 IoT experts to assess the extent to which the decomposed tasks
cover all essential parts of the application based on the reference.

GT G4 DC CL WCCQ GCMC
System name

0.5

0.6

0.7

0.8

Si
m

ila
rit

y

3.25

3.75

4.25

4.75

U
R

C

Similarity
URC

(a) The embedding similarity

GT G4 DC CL WCCQ GC MC
System name

0.2

0.3

0.4

0.5

Pa
ss

@
1

CodeLlama on HumanEval

0.2

0.4

0.6

0.8

Pa
ss

@
5

Pass@1
Pass@5

(b) The pass@k
Figure 18: Breakdown evaluation on CGSLM

P1 P2 P3 P4
Different prompts

94

96

98

100

A
cc

ur
ac

y
(%

)

0

100

200

300

G
PU

 (M
B

)

Accuracy
Memory

(a) Specifying resource constraints

GT G4 CQ MC
System name

0

5

10

15

O
cc

ur
re

nc
e

Bugs
Security
Code Smells

(b) Code quality evaluation
Figure 19: (a) EvaluatingGPIoT ’s performance using prompts
with different resource constraints. (b) Evaluating the quality
of the code generated by CGSLM using SonarQube.

CGSLM. 1) Code embedding similarity: we use CodeT5+ [71] to
convert code snippets into embeddings and compute the cosine sim-
ilarity between embeddings of the generated and reference code. A
higher similarity indicates a stronger ability to generate IoT-related
code. 2) Pass@k: we measure the pass@k value by calculating the
portion of programs that pass all the test cases. A higher value indi-
cates better performance of the generated code. 3) User Requirement
Coverage (URC): we first ask the users to execute the generated code
and review the documentation. Next, they are asked to evaluate
the extent to which the generated code and documentation fulfill
all the user requirements. 4) Code quality: we assess the quality of
the generated code by adopting a commercial-off-the-shelf (COTS)
code quality verification tool, SonarQube [59], detecting bug/logic
errors, security issues, and code smells [1]. Code smells are not
bugs but bad coding styles (e.g., variable name mismatching regular
expression) or potential weaknesses (e.g., package version incom-
patibility). Note that STC and URC are user-related metrics, which
are rated on a scale from 1 (not at all) to 5 (completely).

6.4.2 TDSLM. We input each problem statement from IoTBench
into TDSLM and the baselines to generate 20 different decomposed
tasks and calculate the average BLEU score, FCR, and URC. From
Fig. 17, we observe: 1) The decomposed tasks generated by TDSLM
achieve a 48% higher BLEU score than the baselines on average,
indicating a stronger decomposition ability for IoT tasks. 2) TDSLM
achieves 99% FCR, indicating remarkable stability to generate in-
termediate output (decomposed tasks) based on pre-defined formats.
3) TDSLM also achieves a 28% higher STC on average, showcasing
strong abilities in understanding IoT knowledge and generating
comprehensive decomposed tasks for IoT applications. Such su-
perior IoT task decomposition and data formatting performance
of TDSLM originate from the tuning process on TDD with our
IoT-oriented text data augmentation method.

6.4.3 CGSLM. We input each task specification from IoTBench
into CGSLM and the baselines to generate 20 different code & docu-
mentation. We then report the average code embedding similarity,
pass@1, pass@5, URC, and the number of various issues detected by
SonarQube. by executing and reviewing the code. For comparison,
we also report the pass@1 achieved by CodeLlama on a general-
purpose programming benchmark, HumanEval [10]. From Fig. 18,

GPIoT: Tailoring Small Language Models for IoT Program Synthesis and Development SenSys ’25, May 6–9, 2025, Irvine, CA, USA

0.5

0.6

0.7

0.8 BLEU

0.7

0.8

0.9

1.0 FCR

3.5

4.0

4.5

5.0 STC

w A. w/o A. G4
(a) Impact on TDSLM

w A. w/o A. G420

40

60

80

100

Pr
ec

is
io

n
(%

)

92

94

96

98

100

R
ec

al
l (

%
)

Precision
Recall

(b) Impact on HD
Figure 20: Ablation of IoT-oriented augmentation (A.).

0.65

0.7

0.75

0.8Similarity

0.2

0.3

0.4

0.5 Pass@1

4.25

4.5

4.75

5 URC

w P. w/o P. G4
(a) Impact on CGSLM

w P. w/o P. G480

85

90

95

100

A
cc

ur
ac

y
(%

)

0

1.5

3

4.5

6

Ti
m

e
(m

s)

Accuracy
Time

(b) Impact on HAR
Figure 21: Ablation of PECT (P. in the figure).

we observe that: 1) 1) CGSLM achieves an 18% higher code embed-
ding similarity than the baselines on average, implying stronger ca-
pability and generalizability in generating IoT-related code snippets.
2) CGSLM achieves higher pass@1 and pass@5 than the baselines,
with an average increase of 21.5% and 31%, respectively, showcasing
higher quality and accuracy of the generated code for solving IoT
tasks. 3) Nearly all the baselines achieve much lower pass@1 for IoT
programming tasks than CodeLlama on HumanEval due to limited
capabilities in the IoT domain. 4) Users show a stronger preference
for CGSLM over the baselines, with an average increase of 23% in
URC. 5) The program synthesized by CGSLM contains fewer bugs,
security issues, and code-smell-related issues. This is primarily be-
cause, CGSLM, fine-tuned on our manually crafted datasets, can
synthesize programs with enhanced code quality. Such superior
abilities of CGSLM in generating IoT-related code snippets with
high URC stems from our co-tuning on CGD with well-structured
data. Consequently, CGSLM can generate code adopting more IoT-
specific algorithms following task specifications.
6.5 Ablation Study
We conduct an ablation study by removing some proposed technical
modules to investigate their importance to GPIoT.
6.5.1 IoT-Oriented Data Augmentation. We directly tune TD-
SLM on the raw dataset without our IoT-oriented data augmenta-
tion, which contains only 273 data samples. We then evaluate the
tuned model on IoTBench and report the average BLUE score, FCR,
and STC. As shown in Fig. 20(a), without our augmentation, the
tuned model exhibits a substantial performance decline across all
metrics, much lower than GPT-4o. The main reason is that the raw
dataset lacks generalizability and diversity in the IoT domain, which
limits the tuned SLM’s ability to decompose IoT problems into man-
ageable sub-tasks, occasionally leading to incorrect results due to
hallucinations. As a result, if we use such an insufficiently tuned
TDSLM for heartbeat detection, GPIoT still adopts a simple peak
detection algorithm, leading to significant performance degradation
of the generated code in both precision and recall rate (Fig. 20(b)).
The results demonstrate the importance of our IoT-oriented text
data augmentation method in improving TDSLM’s capability in
task decomposition and IoT domain knowledge comprehension.
6.5.2 PECT. We separately fine-tune TDSLM and CGSLM on their
own datasets without our PECT paradigm. We then evaluate the
performance of the tuned CGSLM on IoTBench and measure the
average code embedding similarity, pass@1, and URC. As shown in

85

90

95

100 Precision (%)

94

96

98

100 Recall (%)

w R. w/o R. G4
(a) Impact on HD

85

90

95

100 Acc(%)

100

200

300

400GPU(MB)

0.7

1.4

2.1

2.8Time(ms)

w R. w/o R. G4
(b) Impact on HAR

Figure 22: Ablation of requirement transformation.

OCP

CDR

GECM

US

1
2
3
4

GT GC DC CL MC

(a) Signal processing-related tasks

OCP

CDR

GECM

US

1
2
3
4

GT GC DC CL MC

(b) Machine learning-related tasks
Figure 23: User study on different tasks.

Fig. 21(a), without PECT, the code generated by CGSLM exhibits per-
formance degradation across all the metrics. This is because some
IoT domain knowledge possessed by TDSLM cannot be shared with
CGSLM. As a result, CGSLM cannot handle some programming
tasks that are out of the scope, providing simple programs with
degraded performance. However, even such insufficiently tuned
CGSLM still outperforms GPT-4o, highlighting the advantage of
fine-tuning in enhancing IoT-related code generation ability. Fur-
thermore, without PECT in the HAR task, the final code neither
adopts data pre-processing methods nor designs high-performance
neural networks, leading to decreased classification accuracy, as
shown in Fig. 21(b). The results confirm the importance of our PECT
paradigm in mitigating the domain misalignment issue and facili-
tating the IoT knowledge sharing between TDSLM and CGSLM.
6.5.3 RTSLM. We directly feed the natural-language-described
decomposed tasks from TDSLM into CGSLM. We then compare
the performance of the generated code by GPIoT, GPIoT without
RTSLM, and GPT-4o. As illustrated in Fig. 22, without RTSLM, we
find that: 1) In HD,GPIoT tends to generate code unrelated to the IoT
domain with substantial precision degradation but a high recall rate.
This implies that the heartbeat detection results contain numerous
false positives. 2) In HAR, GPIoT designs a basic HAR model with
only a few simple layers, leading to a notable accuracy drop. These
results highlight the importance of RTSLM in aiding CGSLM to
understand the decomposed tasks generated by TDSLM, thereby
improving its code generation ability for IoT applications.
6.6 User Study
We conduct a user study to evaluate the functionality, generaliz-
ability, and overall satisfaction of GPIoT for IoT application devel-
opment. Specifically, with GPIoT deployed on an edge server, we
invite 5 experts and 15 non-experts in IoT and ask them to freely
express their requirements for any IoT application development
that requires signal processing or AI technologies. By sequentially
executing the generated code based on the instructions in the docu-
mentation, we ask the users to rate GPIoT based on five metrics: 1)
Overall Code Performance (OCP) evaluates the overall performance
of the generated code on corresponding test data considering task
accuracy, runtime efficiency, and resource consumption; 2) Code &
Documentation Readability (CDR) measures the clarity and struc-
ture of the code and documentation; 3) Generation Efficiency (GE)

SenSys ’25, May 6–9, 2025, Irvine, CA, USA Leming Shen, Qiang Yang, Xinyu Huang, Zijing Ma, Yuanqing Zheng

accesses how efficiently GPIoT operates in terms of speed and re-
source usage to produce the final results; 4) Code Modularity (CM)
judges whether the code is properly modularized for easy reuse
and extension; 5) User Satisfaction (US) captures users’ feedback
regarding their overall personal experience. All the above metrics
are rated by the users on a scale from 1 (not at all) to 5 (completely).
Github Copilot, DeepSeek-Coder (cloud), CodeLlama (local), and
MapCoder (agent) serve as representative baselines for comparison.

As shown in Fig. 23, we observe: 1) GPIoT significantly outper-
forms the baselines in terms of OCP and US. The main reason is
that, tuned on our IoT-specialized datasets,GPIoT can generate code
containing more dedicated algorithms with better performance.
Therefore, the users provide a higher score for GPIoT regarding the
overall code performance and user satisfaction. 2) GPIoT achieves
similar scores to the baselines in terms of CDR and CM, because
our datasets mainly focus on generating IoT-related code snippets.
Therefore, the readability of the code and documentation are not
explicitly enhanced via tuning. 3) GPIoT gets a lower GE score
as it performs requirement transformation and code generation
for each decomposed task. Nevertheless, we can enhance its effi-
ciency by adopting various LLM inference and serving optimization
methods [20]. Additionally, during our implementation, we find
that MapCoder costs around $20 to synthesize a program for a
single IoT application while GPIoT incurs no query costs. The infe-
rior performance of MapCoder may be attributed to the fact that
LLM+RAG-based agents typically incorporate multiple modules to
generate intermediate results in a cascaded manner, making them
susceptible to unstable networks. This yields longer generation
time, prohibitive token costs, and degraded user experiences. The
user study results demonstrate the superior performance of GIoT in
synthesizing IoT-related programs in an end-to-end manner, with
the ability to generalize to other unseen IoT applications.

7 DISCUSSION
System Cost of GPIoT. In GPIoT, though there are three SLMs (i.e.,
TDSLM, RTSLM, and CGSLM) operating simultaneously in GPIoT,
they share the same foundation model architecture and only differ
in a small subset of tunable parameters (§ 4.2). Moreover, though
LLM+RAG systems (e.g., MapCoder) require less memory (no more
than 1 GB), GPIoT does not need sophisticated prompt design and
requires a shorter generation time for the final output (§ 6.6).
Applicability to Resource-Constrained IoT Devices. The main
focus of GPIoT is generating domain-specific and high-quality code
for IoT application development. Considering the resource hetero-
geneity of various IoT devices for data processing, our IoT-Oriented
Data Augmentation method (§ 4.1) augments the original task de-
composition dataset by considering various resource requirements
of different target platforms for IoT application development. Fur-
ther experiments (Fig. 19(a)) demonstrate the effectiveness of GPIoT
in handling different resource requirements with optimized models.
Generalizability of GPIoT. Existing IoT applications can be cate-
gorized into four types based on the functionality they deliver: data
collection, data transmission, data processing, and decision-making.
Data collection, transmission, and decision-making have been ex-
tensively studied using fixed programs. For instance, manufacturers
typically provide COTS sample code for sensor data collection [14].
In contrast, IoT data processing demands more complex algorithms

due to fluctuating sensor data with noises and various resource con-
straints. Therefore, GPIoT focuses on IoT data processing tasks by
offering end-to-end solutions with executable programs. We believe
that the general workflow (i.e., task decomposition → requirement
transformation→ code generation) ofGPIoT can be applied to other
programming tasks. In future work, we plan to comprehensively
assess GPIoT in other complex programming tasks.

8 RELATEDWORK
Code LLMs & Programming Copilot. Code LLMs have signifi-
cantly impacted the field of code generation, with prominent exam-
ples such as CodeLlama [53] and DeepSeek-Coder [88]. Trained on
vast datasets comprising diverse code repositories, these models
are capable of synthesizing programs based on user requirements,
effectively bridging the gap between natural language and code.
One notable application is GitHub Copilot, an LLM-powered assis-
tant that provides real-time code suggestions and auto-completion.
Though powerful and promising, existing code LLMs and copilots
are primarily designed for general-purpose programming, lacking
customization to the IoT domain when tasked with IoT applications.
GPIoT addresses this by tuning local SLMs on IoT-specialized text-
generation datasets with scrupulous augmentation. Additionally, by
locally deploying GPIoT, it can potentially serve as a copilot for IoT
application developers, enhancing task accuracy and development
efficiency in a privacy-preserving manner.
Data Augmentation for LLMs. Existing text augmentation meth-
ods [16, 72] for LLM tuning harness the advanced language process-
ing capabilities of powerful LLMs (e.g., GPT-4) to synthesize diverse
and high-quality text data. These methods have two categories: 1)
Depth-based augmentation [9, 78] aims to increase the complexity
of the original text data by adding constraints, concretizing the
problem, and increasing reasoning steps. 2) Breadth-based augmen-
tation [37] directly uses powerful LLMs to rewrite the original text
data and generate a completely new instruction. However, these
augmentation methods focus on linguistic characteristics rather
than the IoT domain knowledge. In GPIoT, we propose a novel
IoT-oriented text augmentation method tailored for the IoT do-
main, considering unique features of IoT applications, i.e., sensor
modalities, data representations, and system resource constraints.

9 CONCLUSION
We present GPIoT, a tailored local code generation system that syn-
thesizes programs with documentation based on user requirements
for IoT application development. Armed with two IoT-specialized
text-generation datasets, the IoT-oriented augmentation method,
and our PECT paradigm, GPIoT can generate more IoT-related code
in a privacy-preserving way, achieving enhanced task accuracy
and user satisfaction for IoT application development. As IoT tech-
nologies are emerging rapidly, it is also worthwhile to explore the
construction of a dynamic IoT knowledge database and continuous
fine-tuning of local SLMs in the future.

ACKNOWLEDGMENTS
We sincerely thank our anonymous shepherd and reviewers for
their constructive comments and invaluable suggestions that helped
improve this paper. This work is supported by Hong Kong GRF
Grant No. 15211924 and 15206123. Yuanqing Zheng is the corre-
sponding author.

GPIoT: Tailoring Small Language Models for IoT Program Synthesis and Development SenSys ’25, May 6–9, 2025, Irvine, CA, USA

REFERENCES
[1] 2024. Python static code analysis. Unique rules to find Bugs, Vulnerabilities,

Security Hotspots, and Code Smells in your PYTHON code. https://rules.sona
rsource.com/python/RSPEC-2316/

[2] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal
Anadkat, et al. 2023. Gpt-4 technical report. arXiv preprint arXiv:2303.08774
(2023).

[3] Aakriti Adhikari and Sanjib Sur. 2024. MiSleep: Human sleep posture identifi-
cation from deep learning augmented millimeter-wave wireless systems. ACM
Transactions on Internet of Things (2024), 1–33.

[4] Tuo An, Yunjiao Zhou, Han Zou, and Jianfei Yang. 2024. IoT-LLM: Enhancing
Real-World IoT Task Reasoning with Large Language Models. arXiv preprint
arXiv:2410.02429 (2024).

[5] Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan,
Wenbin Ge, Yu Han, Fei Huang, et al. 2023. Qwen technical report. arXiv preprint
arXiv:2309.16609 (2023).

[6] Jiani Cao, Jiesong Chen, Chengdong Lin, Yang Liu, Kun Wang, and Zhenjiang Li.
2024. Practical Gaze Tracking on Any Surface with Your Phone. IEEE Transactions
on Mobile Computing (2024).

[7] Jiani Cao, Yang Liu, Lixiang Han, and Zhenjiang Li. 2024. Finger Tracking Using
Wrist-Worn EMG Sensors. IEEE Transactions on Mobile Computing (2024).

[8] Harrison Chase. 2022. LangChain. https://github.com/langchain-ai/langchain
[9] Liuqing Chen, Yiyan Tsang, Qianzhi Jing, and Lingyun Sun. 2024. A LLM-

augmented Morphological Analysis Approach for Conceptual Design. (2024).
[10] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde

De Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large language models trained on code.
arXiv preprint arXiv:2107.03374 (2021).

[11] Shouyuan Chen, Sherman Wong, Liangjian Chen, and Yuandong Tian. 2023.
Extending context window of large language models via positional interpolation.
arXiv preprint arXiv:2306.15595 (2023).

[12] Jake Choi, Heon Young Yeom, and Yoonhee Kim. 2021. Implementing cuda unified
memory in the pytorch framework. In IEEE ACSOS-C.

[13] Kaiyan Cui, Leming Shen, Yuanqing Zheng, Fu Xiao, and Jinsong Han. 2024.
Talk2Radar: Talking to mmWave Radars via Smartphone Speaker. In IEEE INFO-
COM 2024-IEEE Conference on Computer Communications. IEEE, 2358–2367.

[14] Dejan. 2024. Arduino and MPU6050 Accelerometer and Gyroscope Tutorial.
https://howtomechatronics.com/tutorials/arduino/arduino-and-mpu6050-acce
lerometer-and-gyroscope-tutorial/

[15] Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. 2024.
Qlora: Efficient finetuning of quantized llms. Advances in Neural Information
Processing Systems (2024).

[16] Bosheng Ding, Chengwei Qin, Ruochen Zhao, Tianze Luo, Xinze Li, Guizhen
Chen, Wenhan Xia, Junjie Hu, Anh Tuan Luu, and Shafiq Joty. 2024. Data
augmentation using llms: Data perspectives, learning paradigms and challenges.
arXiv preprint arXiv:2403.02990 (2024).

[17] Hao Ding, Ziwei Fan, Ingo Guehring, Gaurav Gupta, Wooseok Ha, Jun Huan,
Linbo Liu, BehroozOmidvar-Tehrani, ShiqiWang, andHao Zhou. 2024. Reasoning
and Planning with Large Language Models in Code Development. In ACM KDD.

[18] Ning Ding, Xingtai Lv, Qiaosen Wang, Yulin Chen, Bowen Zhou, Zhiyuan Liu,
and Maosong Sun. 2023. Sparse low-rank adaptation of pre-trained language
models. arXiv preprint arXiv:2311.11696 (2023).

[19] Jinxiao Fan, Mengshi Qi, Liang Liu, and Huadong Ma. 2025. Diffusion-driven
Incomplete Multimodal Learning for Air Quality Prediction. ACM Transactions
on Internet of Things (2025), 1–24.

[20] Yao Fu, Leyang Xue, Yeqi Huang, Andrei-Octavian Brabete, Dmitrii Ustiugov,
Yuvraj Patel, and Luo Mai. 2024. {ServerlessLLM}:{Low-Latency} Serverless
Inference for Large Language Models. In 18th USENIX Symposium on Operating
Systems Design and Implementation.

[21] GitHub. 2024. GitHub Copilot - The world’s most widely adopted AI developer
tool. https://github.com/features/copilot

[22] Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang,
Guanting Chen, Xiao Bi, Yu Wu, YK Li, et al. 2024. DeepSeek-Coder: When the
Large Language Model Meets Programming–The Rise of Code Intelligence. arXiv
preprint arXiv:2401.14196 (2024).

[23] Linlin Guo, Lei Wang, Chuang Lin, Jialin Liu, Bingxian Lu, Jian Fang, Zhonghao
Liu, Zeyang Shan, Jingwen Yang, and Silu Guo. 2019. Wiar: A public dataset for
wifi-based activity recognition. IEEE Access (2019).

[24] Dong Han, Syed Khairul Bashar, Jesús Lázaro, Fahimeh Mohagheghian, Andrew
Peitzsch, Nishat Nishita, Eric Ding, Emily L Dickson, Danielle DiMezza, Jessica
Scott, et al. 2022. A real-time PPG peak detection method for accurate determina-
tion of heart rate during sinus rhythm and cardiac arrhythmia. Biosensors (2022),
82.

[25] Ningning Hou, Xianjin Xia, Yifeng Wang, and Yuanqing Zheng. 2024. One shot
for all: Quick and accurate data aggregation for LPWANs. IEEE/ACM Transactions
on Networking (2024), 2285–2298.

[26] Ningning Hou, Xianjin Xia, and Yuanqing Zheng. 2023. Don’t miss weak packets:
Boosting LoRa reception with antenna diversities. ACM Transactions on Sensor
Networks (2023), 1–25.

[27] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean
Wang, Lu Wang, and Weizhu Chen. 2021. Lora: Low-rank adaptation of large
language models. arXiv preprint arXiv:2106.09685 (2021).

[28] Dong Huang, Qingwen Bu, Jie M Zhang, Michael Luck, and Heming Cui. 2023.
Agentcoder: Multi-agent-based code generation with iterative testing and opti-
misation. arXiv preprint arXiv:2312.13010 (2023).

[29] IBM. 2024. What are small language models? https://www.ibm.com/think/topi
cs/small-language-models

[30] Md Ashraful Islam, Mohammed Eunus Ali, and Md Rizwan Parvez. 2024. Map-
Coder: Multi-Agent Code Generation for Competitive Problem Solving. arXiv
preprint arXiv:2405.11403 (2024).

[31] Sijie Ji, Yaxiong Xie, and Mo Li. 2022. SiFall: Practical online fall detection with
RF sensing. In Proceedings of the 20th ACM Conference on Embedded Networked
Sensor Systems. 563–577.

[32] Sijie Ji, Xuanye Zhang, Yuanqing Zheng, and Mo Li. 2023. Construct 3d hand
skeleton with commercial wifi. In Proceedings of the 21st ACM Conference on
Embedded Networked Sensor Systems. 322–334.

[33] Sijie Ji, Xinzhe Zheng, and ChenshuWu. 2024. Hargpt: Are llms zero-shot human
activity recognizers?. In 2024 IEEE International Workshop on Foundation Models
for Cyber-Physical Systems & Internet of Things (FMSys). IEEE, 38–43.

[34] Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and Sunghun Kim. 2024.
A Survey on Large Language Models for Code Generation. arXiv preprint
arXiv:2406.00515 (2024).

[35] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess,
Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. arXiv preprint arXiv:2001.08361 (2020).

[36] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin,
Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel,
et al. 2020. Retrieval-augmented generation for knowledge-intensive nlp tasks.
Advances in Neural Information Processing Systems (2020).

[37] Zheng Li, Lijia Si, Caili Guo, Yang Yang, and Qiushi Cao. 2024. Data Augmentation
for Text-based Person Retrieval Using Large Language Models. arXiv preprint
arXiv:2405.11971 (2024).

[38] Chaofan Lin, Zhenhua Han, Chengruidong Zhang, Yuqing Yang, Fan Yang, Chen
Chen, and Lili Qiu. 2024. Parrot: Efficient Serving of LLM-based Applications
with Semantic Variable. In USENIX OSDI.

[39] Chengdong Lin, Kun Wang, Zhenjiang Li, and Yu Pu. 2023. A workload-aware
dvfs robust to concurrent tasks for mobile devices. In Proceedings of the 29th
Annual International Conference on Mobile Computing and Networking. 1–16.

[40] Neiwen Ling, Kai Wang, Yuze He, Guoliang Xing, and Daqi Xie. 2021. Rt-mdl:
Supporting real-time mixed deep learning tasks on edge platforms. In ACM
SenSys.

[41] Kaiwei Liu, Bufang Yang, Lilin Xu, Yunqi Guo, Neiwen Ling, Zhihe Zhao, Guoliang
Xing, Xian Shuai, Xiaozhe Ren, Xin Jiang, et al. 2024. Tasking Heterogeneous
Sensor Systems with LLMs. In ACM SenSys.

[42] Zhenyan Lu, Xiang Li, Dongqi Cai, Rongjie Yi, Fangming Liu, Xiwen Zhang,
Nicholas D Lane, and Mengwei Xu. 2024. Small Language Models: Survey,
Measurements, and Insights. arXiv preprint arXiv:2409.15790 (2024).

[43] Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu,
Chongyang Tao, Jing Ma, Qingwei Lin, and Daxin Jiang. 2023. Wizardcoder:
Empowering code large language models with evol-instruct. arXiv preprint
arXiv:2306.08568 (2023).

[44] George BMoody and Roger GMark. 2001. The impact of the MIT-BIH arrhythmia
database. IEEE engineering in medicine and biology magazine (2001).

[45] Baiju Muthukadan et al. [n. d.]. Selenium with Python. https://github.com/baiju
m/selenium-python

[46] Jingping Nie, Hanya Shao, Yuang Fan, Qijia Shao, Haoxuan You, Matthias Preindl,
and Xiaofan Jiang. 2024. LLM-based Conversational AI Therapist for Daily
Functioning Screening and Psychotherapeutic Intervention via Everyday Smart
Devices. arXiv preprint arXiv:2403.10779 (2024).

[47] Xiaomin Ouyang, Xian Shuai, Yang Li, Li Pan, Xifan Zhang, Heming Fu, Sitong
Cheng, Xinyan Wang, Shihua Cao, Jiang Xin, et al. 2024. ADMarker: A
Multi-Modal Federated Learning System for Monitoring Digital Biomarkers
of Alzheimer’s Disease. In ACM MobiCom.

[48] Xiaomin Ouyang and Mani Srivastava. 2024. LLMSense: Harnessing LLMs
for High-level Reasoning Over Spatiotemporal Sensor Traces. arXiv preprint
arXiv:2403.19857 (2024).

[49] Xiaomin Ouyang, Zhiyuan Xie, Heming Fu, Sitong Cheng, Li Pan, Neiwen Ling,
Guoliang Xing, Jiayu Zhou, and Jianwei Huang. 2023. Harmony: Heterogeneous
multi-modal federated learning through disentangled model training. In ACM
MobiSys. 530–543.

[50] Jiapu Pan and Willis J Tompkins. 1985. A real-time QRS detection algorithm.
IEEE transactions on biomedical engineering (1985).

[51] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. Bleu: a
method for automatic evaluation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computational Linguistics.

https://rules.sonarsource.com/python/RSPEC-2316/
https://rules.sonarsource.com/python/RSPEC-2316/
https://github.com/langchain-ai/langchain
https://howtomechatronics.com/tutorials/arduino/arduino-and-mpu6050-accelerometer-and-gyroscope-tutorial/
https://howtomechatronics.com/tutorials/arduino/arduino-and-mpu6050-accelerometer-and-gyroscope-tutorial/
https://github.com/features/copilot
https://www.ibm.com/think/topics/small-language-models
https://www.ibm.com/think/topics/small-language-models
https://github.com/baijum/selenium-python
https://github.com/baijum/selenium-python

SenSys ’25, May 6–9, 2025, Irvine, CA, USA Leming Shen, Qiang Yang, Xinyu Huang, Zijing Ma, Yuanqing Zheng

[52] Bharadwaj Pudipeddi, Maral Mesmakhosroshahi, Jinwen Xi, and Sujeeth Bharad-
waj. 2020. Training large neural networks with constant memory using a new
execution algorithm. arXiv preprint arXiv:2002.05645 (2020).

[53] Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiao-
qing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023. Code
llama: Open foundation models for code. arXiv preprint arXiv:2308.12950 (2023).

[54] Noam Shazeer. 2020. Glu variants improve transformer. arXiv preprint
arXiv:2002.05202 (2020).

[55] Leming Shen, Qiang Yang, Kaiyan Cui, Yuanqing Zheng, Xiao-Yong Wei, Jian-
wei Liu, and Jinsong Han. 2024. Fedconv: A learning-on-model paradigm for
heterogeneous federated clients. In Proceedings of the 22nd Annual International
Conference on Mobile Systems, Applications and Services. 398–411.

[56] Leming Shen, Qiang Yang, Yuanqing Zheng, and Mo Li. 2025. AutoIOT: LLM-
Driven Automated Natural Language Programming for AIoT Applications. In
Proceedings of the 31st Annual International Conference on Mobile Computing and
Networking.

[57] Leming Shen and Yuanqing Zheng. 2023. FedDM: data and model heterogeneity-
aware federated learning via dynamic weight sharing. In 2023 IEEE 43rd Interna-
tional Conference on Distributed Computing Systems (ICDCS). IEEE, 975–976.

[58] Leming Shen and Yuanqing Zheng. 2024. IoTCoder: A Copilot for IoT Application
Development. In Proceedings of the 30th Annual International Conference on Mobile
Computing and Networking. 1647–1649.

[59] Sonar Source. 2024. SonarQube. https://www.sonarsource.com/
[60] Javier Tejedor, Constantino A García, David G Márquez, Rafael Raya, and Abra-

ham Otero. 2019. Multiple physiological signals fusion techniques for improving
heartbeat detection: A review. Sensors (2019), 4708.

[61] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023. Llama: Open and efficient foundation language models. arXiv
preprint arXiv:2302.13971 (2023).

[62] Shubham Ugare, Tarun Suresh, Hangoo Kang, Sasa Misailovic, and Gagandeep
Singh. 2024. Improving LLM code generation with grammar augmentation. arXiv
preprint arXiv:2403.01632 (2024).

[63] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems (2017).

[64] Pauli Virtanen et al. 2020. SciPy 1.0: Fundamental Algorithms for Scientific
Computing in Python. Nature Methods (2020).

[65] Zhongwei Wan, Xin Wang, Che Liu, Samiul Alam, Yu Zheng, Jiachen Liu, Zhong-
nan Qu, Shen Yan, Yi Zhu, Quanlu Zhang, et al. 2023. Efficient large language
models: A survey. arXiv preprint arXiv:2312.03863 (2023).

[66] Kun Wang, Jiani Cao, Zimu Zhou, and Zhenjiang Li. 2024. SwapNet: Efficient
Swapping for DNN Inference on Edge AI Devices Beyond the Memory Budget.
IEEE Transactions on Mobile Computing (2024).

[67] Kun Wang, Zimu Zhou, and Zhenjiang Li. 2024. LATTE: Layer Algorithm-aware
Training Time Estimation for Heterogeneous Federated Learning. In Proceedings
of the 30th Annual International Conference on Mobile Computing and Networking.
1470–1484.

[68] Tianben Wang, Zhangben Li, Honghao Yan, Xiantao Liu, Boqin Liu, Shengjie Li,
Zhongyu Ma, Jin Hu, Daqing Zhang, and Tao Gu. 2023. AudioGuard: Omnidi-
rectional Indoor Intrusion Detection Using Audio Device. ACM Transactions on
Internet of Things (2023), 1–22.

[69] Wei Wang, Alex X Liu, Muhammad Shahzad, Kang Ling, and Sanglu Lu. 2015.
Understanding and modeling of wifi signal based human activity recognition. In
ACM MobiCom.

[70] Xin Wang, Yu Zheng, Zhongwei Wan, and Mi Zhang. 2024. Svd-llm: Truncation-
aware singular value decomposition for large language model compression. arXiv
preprint arXiv:2403.07378 (2024).

[71] Yue Wang, Hung Le, Akhilesh Deepak Gotmare, Nghi DQ Bui, Junnan Li, and
Steven CH Hoi. 2023. Codet5+: Open code large language models for code
understanding and generation. arXiv preprint arXiv:2305.07922 (2023).

[72] Zhenhua Wang, Guang Xu, and Ming Ren. 2024. LLM-Generated Natural Lan-
guage Meets Scaling Laws: New Explorations and Data Augmentation Methods.
arXiv preprint arXiv:2407.00322 (2024).

[73] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi,
Quoc V Le, Denny Zhou, et al. 2022. Chain-of-thought prompting elicits reasoning
in large language models. Advances in neural information processing systems
(2022).

[74] Hao Wen, Yuanchun Li, Guohong Liu, Shanhui Zhao, Tao Yu, Toby Jia-Jun Li,
Shiqi Jiang, Yunhao Liu, Yaqin Zhang, and Yunxin Liu. 2024. Autodroid: Llm-
powered task automation in android. In ACM MobiCom.

[75] Kevin Wu, Eric Wu, and James Zou. 2024. How faithful are RAG models? Quan-
tifying the tug-of-war between RAG and LLMs’ internal prior. arXiv:2404.10198
(2024).

[76] Shengqiong Wu, Hao Fei, Leigang Qu, Wei Ji, and Tat-Seng Chua. 2023. Next-gpt:
Any-to-any multimodal llm. arXiv preprint arXiv:2309.05519 (2023).

[77] Guangzhi Xiong, Qiao Jin, Xiao Wang, Minjia Zhang, Zhiyong Lu, and Aidong
Zhang. 2024. Improving Retrieval-Augmented Generation in Medicine with
Iterative Follow-up Questions. arXiv preprint arXiv:2408.00727 (2024).

[78] Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng,
Chongyang Tao, and Daxin Jiang. 2023. Wizardlm: Empowering large language
models to follow complex instructions. arXiv preprint arXiv:2304.12244 (2023).

[79] Huatao Xu, Liying Han, Qirui Yang, Mo Li, andMani Srivastava. 2024. Penetrative
ai: Making llms comprehend the physical world. In ACM HotMobile.

[80] Qiang Yang and Yuanqing Zheng. 2021. Model-based head orientation estimation
for smart devices. Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies (2021), 1–24.

[81] Qiang Yang and Yuanqing Zheng. 2023. Aquahelper: Underwater sos transmission
and detection in swimming pools. In Proceedings of the 21st ACM Conference on
Embedded Networked Sensor Systems. 294–307.

[82] Qiang Yang and Yuanqing Zheng. 2024. Neural Enhanced Underwater SOS
Detection. In IEEE INFOCOM. 971–980.

[83] Shiming Yu, Xianjin Xia, Ningning Hou, Yuanqing Zheng, and Tao Gu. 2024.
Revolutionizing lora gateway with xgate: Scalable concurrent transmission across
massive logical channels. In Proceedings of the 30th Annual International Confer-
ence on Mobile Computing and Networking. 482–496.

[84] Shiming Yu, Xianjin Xia, Ziyue Zhang, Ningning Hou, and Yuanqing Zheng.
2024. FDLoRa: Tackling Downlink-Uplink Asymmetry with Full-duplex LoRa
Gateways. In Proceedings of the 22nd ACM Conference on Embedded Networked
Sensor Systems. 281–294.

[85] Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou,
Yingqian Min, Beichen Zhang, Junjie Zhang, Zican Dong, et al. 2023. A survey
of large language models. arXiv preprint arXiv:2303.18223 (2023).

[86] Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. 2021. Calibrate
before use: Improving few-shot performance of languagemodels. In ICML. PMLR.

[87] Hao Zhou, Taiting Lu, Yilin Liu, Shijia Zhang, and Mahanth Gowda. 2022. Learn-
ing on the Rings: Self-Supervised 3D Finger Motion Tracking Using Wearable
Sensors. ACM IMWUT (2022).

[88] Qihao Zhu, Daya Guo, Zhihong Shao, Dejian Yang, Peiyi Wang, Runxin Xu,
Y Wu, Yukun Li, Huazuo Gao, Shirong Ma, et al. 2024. DeepSeek-Coder-V2:
Breaking the Barrier of Closed-Source Models in Code Intelligence. arXiv preprint
arXiv:2406.11931 (2024).

https://www.sonarsource.com/

	Abstract
	1 Introduction
	2 Background & Motivation
	2.1 Code LLM and LLM+RAG
	2.2 Preliminary Experiments & Findings

	3 System Overview
	4 System Design
	4.1 Data Collection & Augmentation
	4.2 Parameter-Efficient Co-Tuning (PECT)
	4.3 Requirement Transformation

	5 Experiment Setup
	5.1 Implementation
	5.2 IoT Applications

	6 Evaluation
	6.1 Metrics
	6.2 Baselines
	6.3 Application Evaluation
	6.4 Breakdown Evaluation
	6.5 Ablation Study
	6.6 User Study

	7 Discussion
	8 Related Work
	9 Conclusion
	Acknowledgments
	References

