

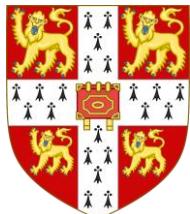
AutoIOT: LLM-Driven Automated Natural Language Programming for AloT Applications

Started Since 2023!

Leming Shen¹, Qiang Yang², Yuanqing Zheng¹, Mo Li³

¹The Hong Kong Polytechnic University, ²University of Cambridge

³Hong Kong University of Science and Technology



Large Language Models (LLMs)

- LLMs revolutionize our interactions with AI
- LLMs exhibit remarkable **natural language understanding** capabilities
- Promising applications: chatbot, medical diagnosis, etc.

ChatGPT

Gemini

DeepSeek



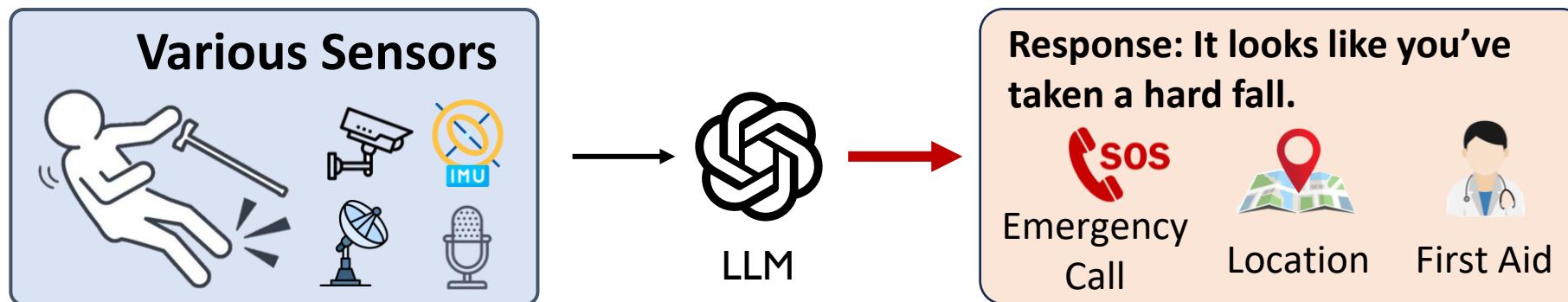
Chatbot



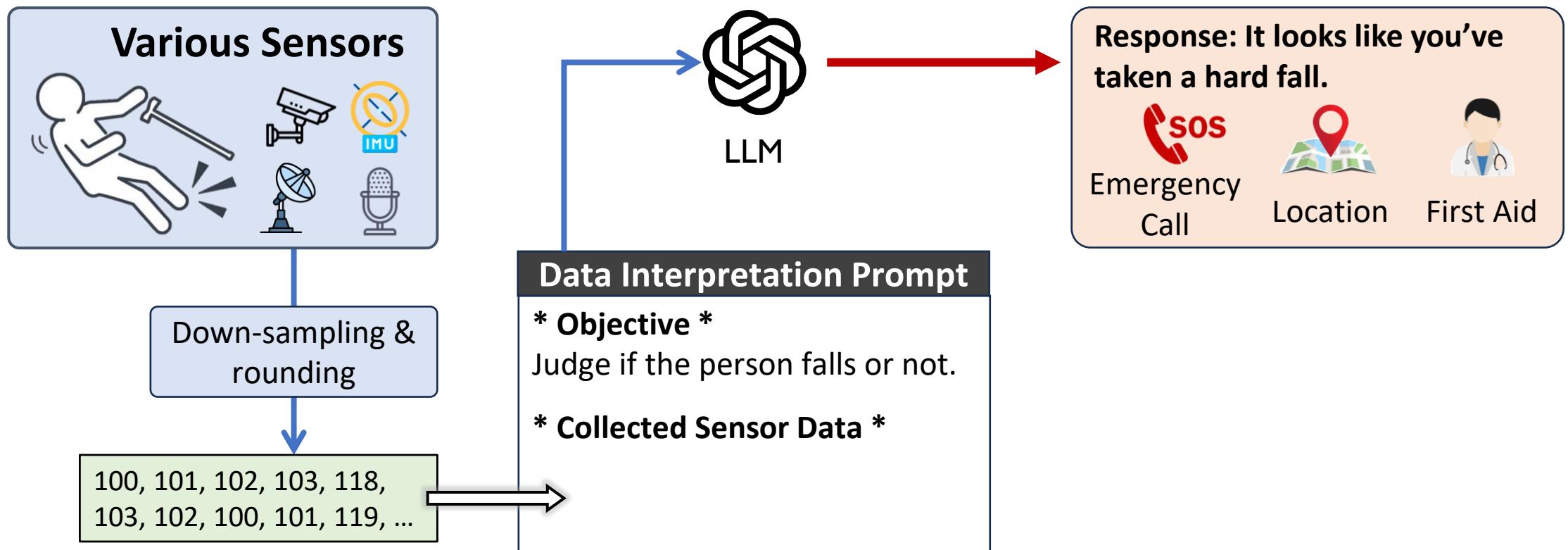
Medical Diagnosis

Pioneer Concept: Penetrative AI [I]

- LLMs can comprehend and even interact with the physical world

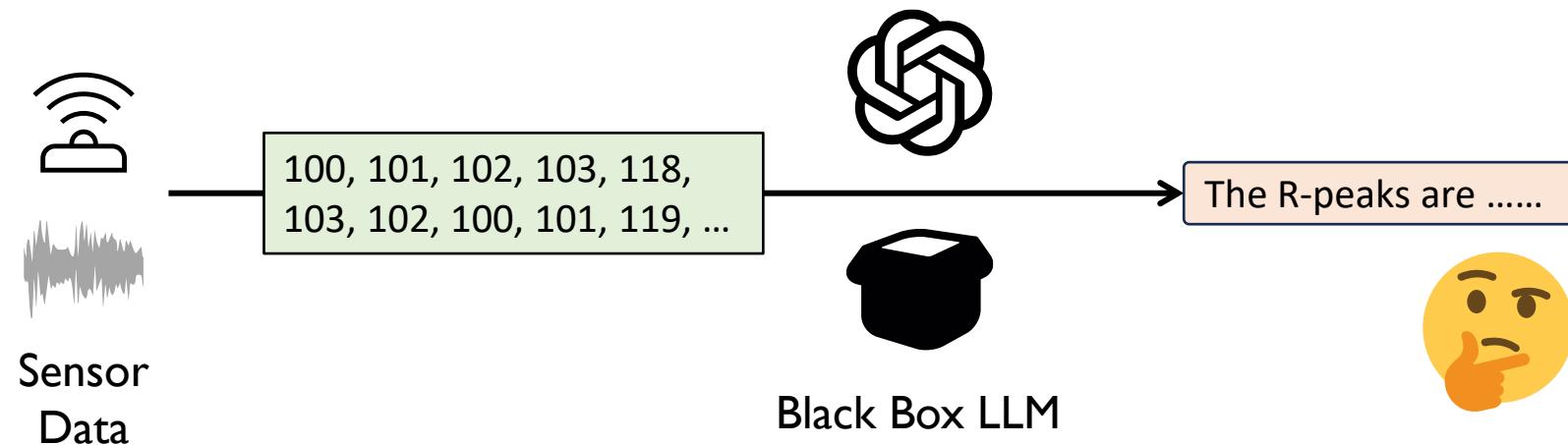


Penetrative AI – Basic Workflow



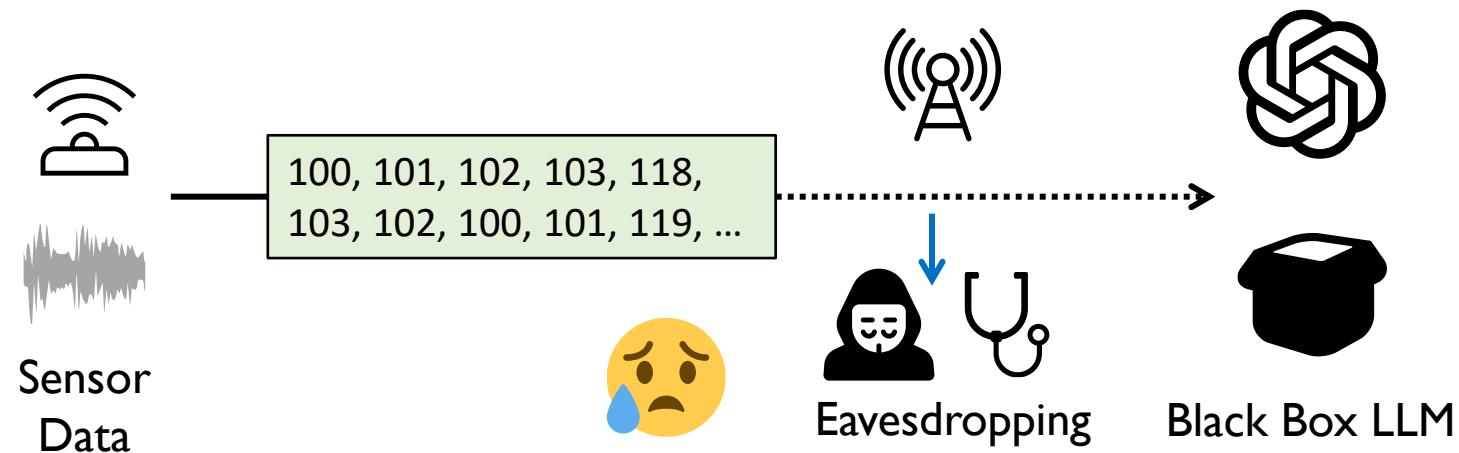
Penetrative AI (Limitation I)

- Compromised trustworthiness of the inference results
- Hard to verify the correctness



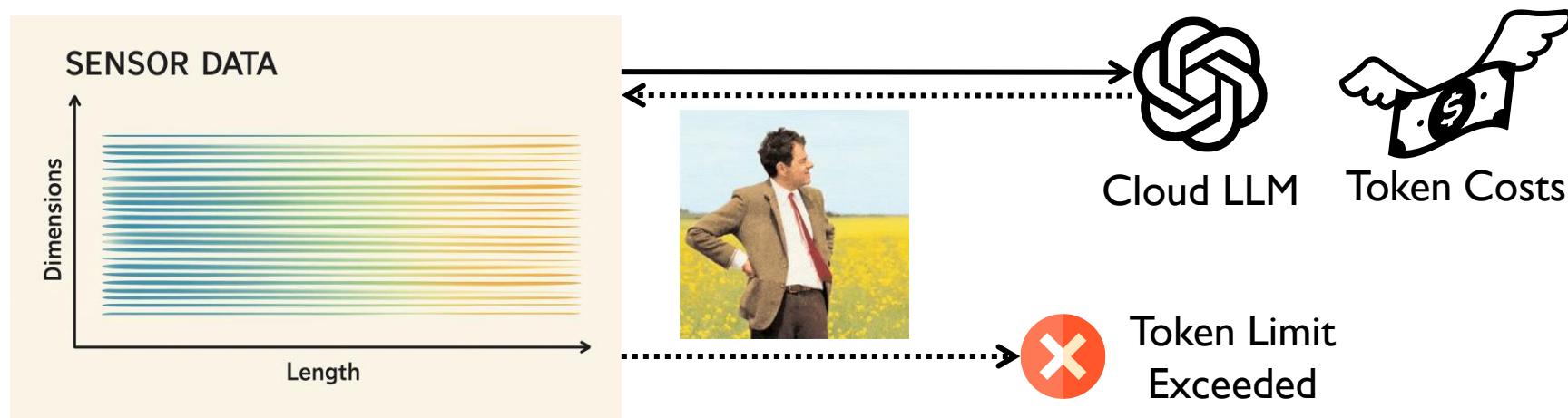
Penetrative AI (Limitation 2)

- Transmitting sensor data over the network **raises privacy concerns**



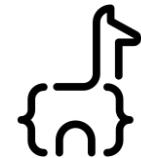
Penetrative AI (Limitation 3)

- Sensor data often exhibits **extensive length and high dimensionality**
 - Prohibitive token costs
 - Increased response latency
 - Infeasible due to token limits



- Ideally, the integration of LLMs with AIoT should be **trustworthy, privacy-preserving, and communication-efficient**
- LLMs have shown their remarkable capabilities in **code generation** ...

GitHub Copilot



Code Llama

CURSOR

Research Question

- Ideally, the integration of LLMs with AIoT applications should be **trustworthy, privacy-preserving, and communication-efficient**
- LLMs have shown their remarkable capabilities in **code generation** ...

Can we leverage LLMs to
synthesize programs to fulfill
AIoT application requirements?

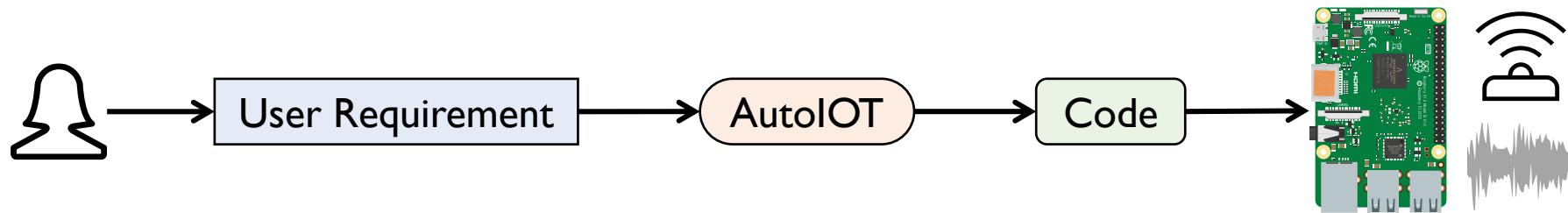
GitHub Copilot

Code Llama

CURSOR

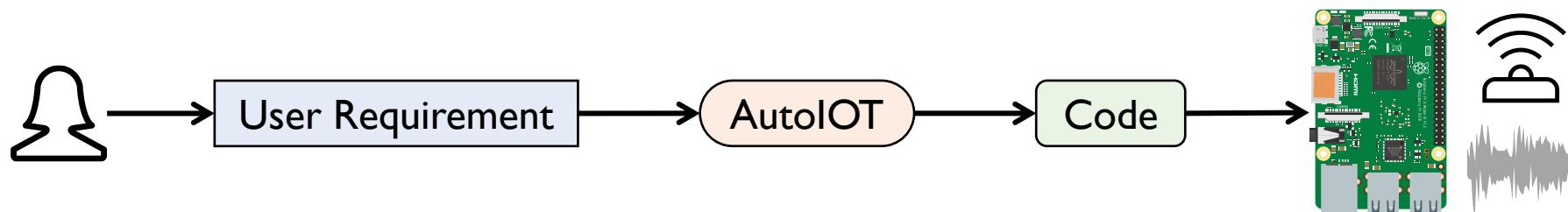
Our Solution: AutoIOT

- Given a user requirement, AutoIOT **automatically** synthesizes programs, which are **locally executed** to perform various Alot tasks.



Our Solution: AutoIOT

- Given a user requirement, AutoIOT **automatically** synthesizes programs, which are **locally executed** to perform various Alot tasks.
- Enhance the explainability and trustworthiness
- Mitigate privacy concerns and reduce communication costs
- Efficiently process high-dimensional sensor data

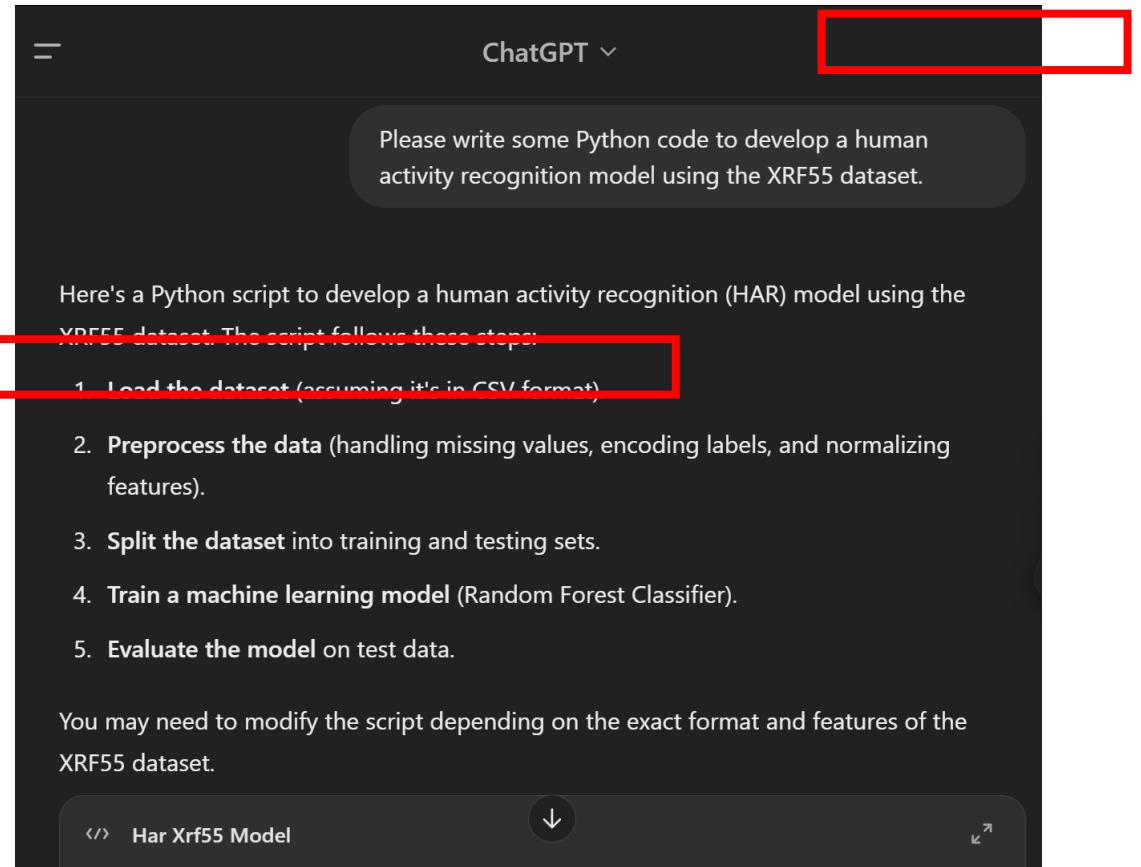


Technical Challenges of AutoIoT

- **C1:** Lack of Domain Knowledge in AoT
- **C2:** High Complexity of AoT Tasks
- **C3:** Heavy Intervention and Constant Feedback

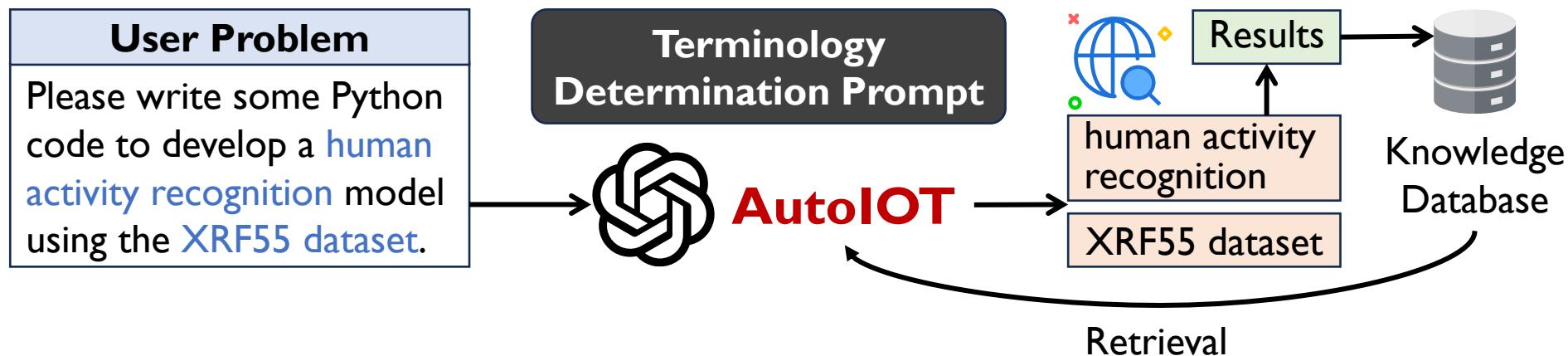
CI: Lack of Domain Knowledge in AIoT

- LLMs are pre-trained on **general** corpus datasets.
- They may not include the latest AIoT domain knowledge.
- **Hallucination** issues



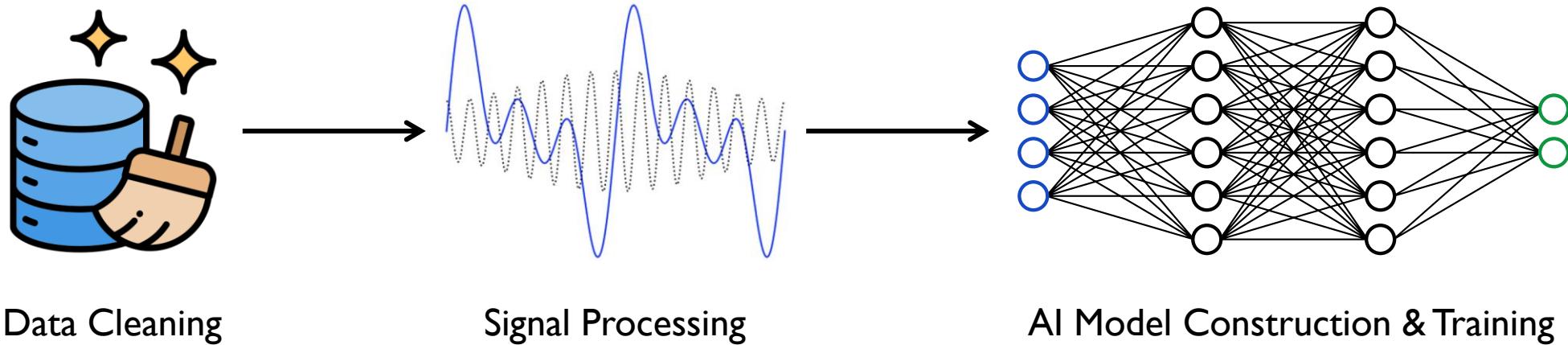
Solution: Background Knowledge Retrieval

- Terminology Determination & Searching
- Context Database Construction



C2: High Complexity of AIoT Tasks

- Existing works generate code for **individual** modules or functions
- AIoT applications typically require **systematic designs** and integration involving **multiple functional components**



C3: High Complexity of AIoT Tasks

- LLMs tend to provide simple and general code
 - Generates some null functions without concrete implementations
 - Imports some nonexistent packages

Help me implement a human activity recognition system using the XRF55 dataset.

Certainly! First, we need to perform data cleaning with some signal processing methods, then we can Here is a simple solution:

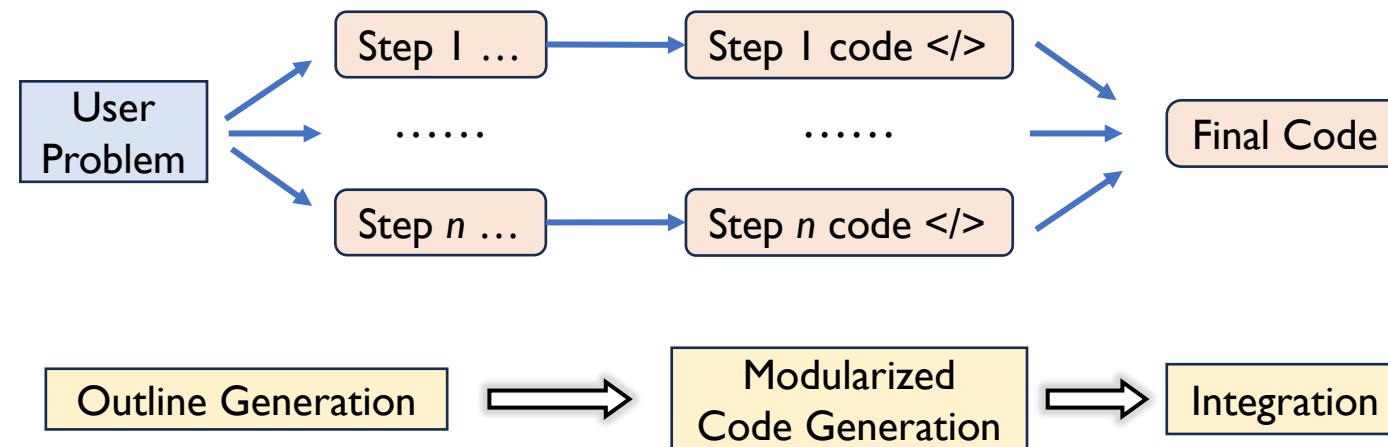
```
Python Copy code
import numpy as np
from XRF55 import dataset
def data_cleaning(signal):
    # Perform data cleaning
def signal_processing(signal):
    # Perform signal processing
def model_training(cleaned_signal):
    # Train the model
```

C3: Heavy Intervention and Constant Feedback

- Provide **timely feedback** and **constantly intervene** in the entire development process
 - Specific reference materials
 - Specific algorithms
 - Clearly described methods
 - Manual debugging

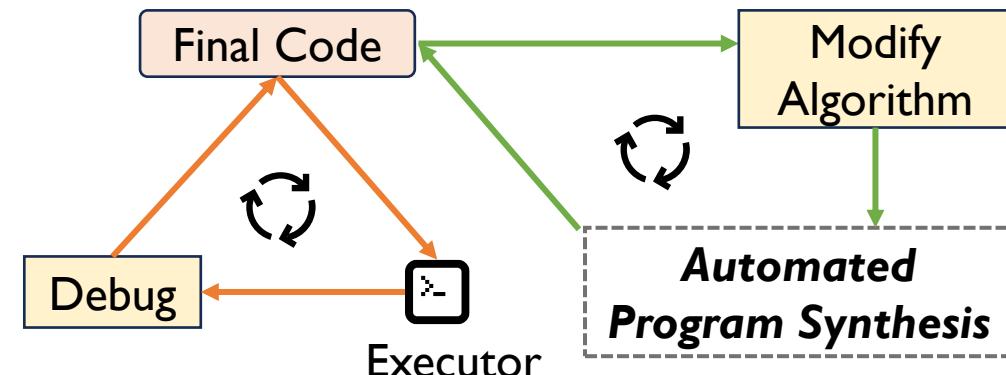
Solution 2: Automated Program Synthesis

- **Chain-of-Thought (CoT) prompts** → step-by-step reasoning.
- Mimic human-like **divide-and-conquer** reasoning.

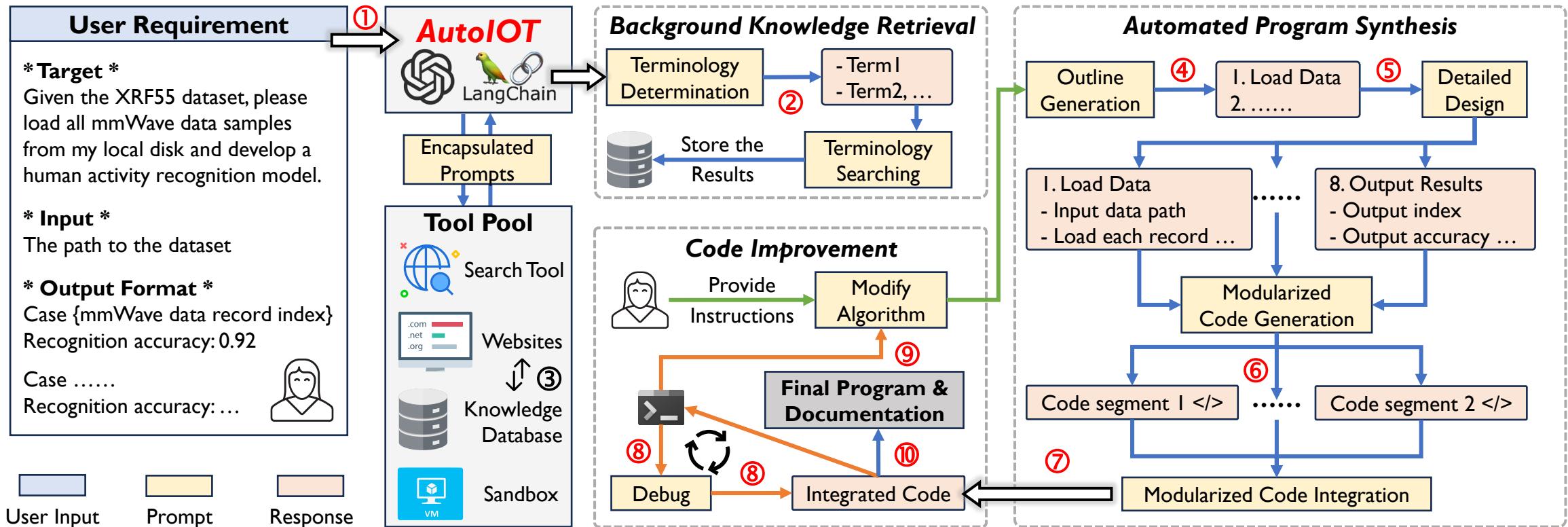


Solution 3: Automated Code Improvement

- Execute code in an **executor**
- Analyze **executor's outputs** for debugging
- Prompts the LLM to **adopt more advanced algorithms**
- This initiates a new **recursive cycle** of program synthesis



Put All Things Together – AutoIOT



Experiment Setup – Implementation

- Software Configurations

- AutoIOT agent: [LangChain](#)
- Default LLM: [GPT-4](#)
- Web search tool: [Tavily AI](#)
- Knowledge database: [Chroma](#)

- Hardware Configurations

- A workstation installed with Ubuntu 20.04 LTS
- An NVIDIA RTX 4090 GPU

Experiment Setup – Applications

- **Heartbeat Detection** (MIT-BIH Arrhythmia Database [1])
- Baseline: Hamiltion, Christov, Engzee, Pan-Tompkins, SWT
- **IMU-based HAR** (WISDM dataset [2])
- Baseline: LSTM-RNN, 1D-CNN, Conv-LSTM, BiLSTM, NN
- **mmWave-based HAR** (XRF55 dataset (newly published) [3])
- Baseline: ResNet18, ResNet34, ResNet50, ResNet101
- **Multimodal HAR** (Harmony (newly published) [4])
- Baseline: Encoder-Classifier

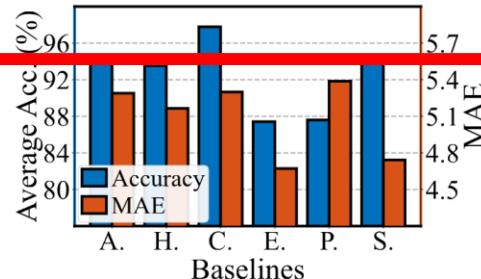
[1] Moody, George B., and Roger G. Mark. "The impact of the MIT-BIH arrhythmia database." IEEE engineering in medicine and biology magazine (2001).

[2] Kwapisz, Jennifer R., Gary M. Weiss, and Samuel A. Moore. "Activity recognition using cell phone accelerometers." ACM KDD (2011).

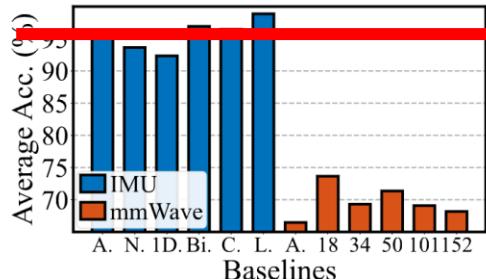
[3] Wang, Fei, et al. "Xrf55: A radio frequency dataset for human indoor action analysis." ACM IMWUT (2024).

[4] Ouyang, Xiaomin, et al. "Harmony: Heterogeneous multi-modal federated learning through disentangled model training." ACM MobiSys (2023).

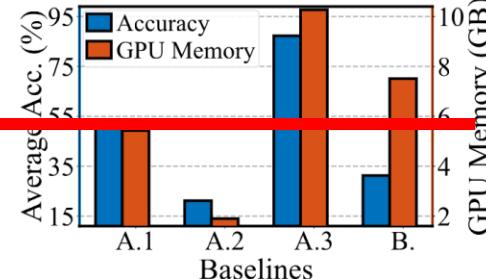
Evaluation – Overall Performance



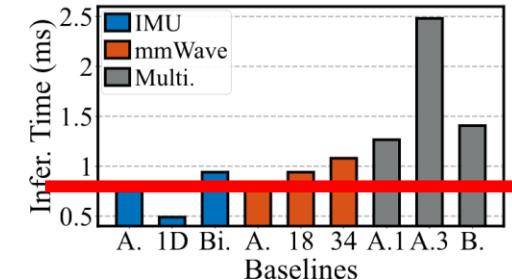
(a) Heartbeat detection



(b) IMU & mmWave-based HAR



(c) Multimodal HAR

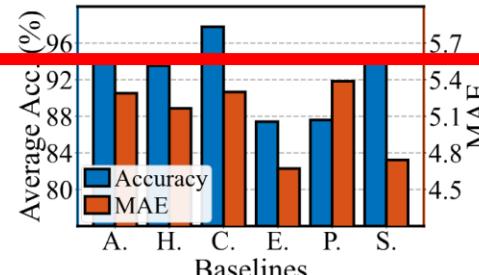


(d) Inference time per sample

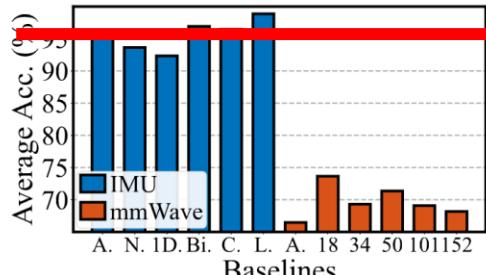
Figure 10: The overall performance of the four IoT applications. In (a), A. for AutoIOT, H. for Hamilton, C. for Christov, E. for Engzee, P. for Pan-Tompkins, and S. for SWT. In (b), N. for NN, 1D for 1D-CNN, Bi. for BiLSTM, C. for Conv-LSTM, L. for LSTM-RNN, and n for ResNet- n . In (c) & (d), A.1, A.2, and A.3 for three different AutoIOT-generated programs; B. for the baseline in the multimodal HAR application.

AutoIOT-synthesized programs can achieve comparable performance to the baselines and **sometimes outperform them**.

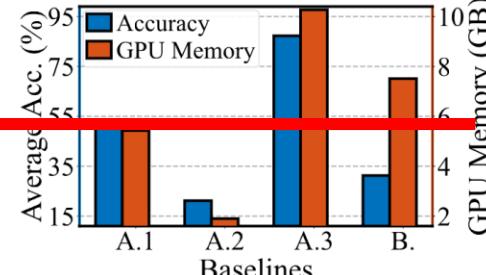
Evaluation – Overall Performance



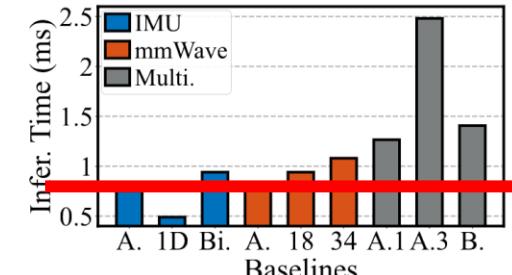
(a) Heartbeat detection



(b) IMU & mmWave-based HAR

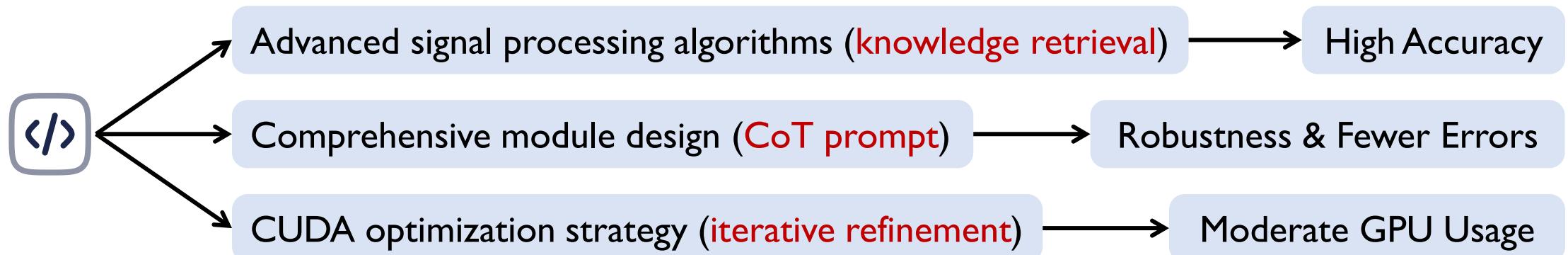


(c) Multimodal HAR



(d) Inference time per sample

Figure 10: The overall performance of the four IoT applications. In (a), A. for AutoIOT, H. for Hamilton, C. for Christov, E. for Engzee, P. for Pan-Tompkins, and S. for SWT. In (b), N. for NN, 1D for 1D-CNN, Bi. for BiLSTM, C. for Conv-LSTM, L. for LSTM-RNN, and n for ResNet- n . In (c) & (d), A.1, A.2, and A.3 for three different AutoIOT-generated programs; B. for the baseline in the multimodal HAR application.



Further Experiments

- Ablation Study
 - Background knowledge retrieval
 - Chain-of-thought
 - Code improvement
- User Study
 - Objective Evaluation
 - Subjective Evaluation

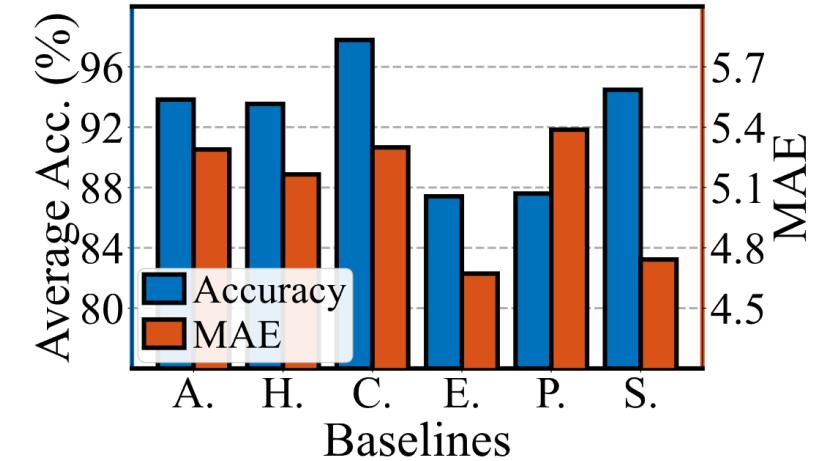
More details in our paper.

Evaluation – Lessons Learned

- Given a **single performance objective**, the LLM carries out **extensive optimization**, sometimes **at the cost of other important metrics**.

Heartbeat Detection
A **large sliding window**
high accuracy but low precision

A method that can elicit **comprehensive**
and clear user requirements.



(a) Heartbeat detection

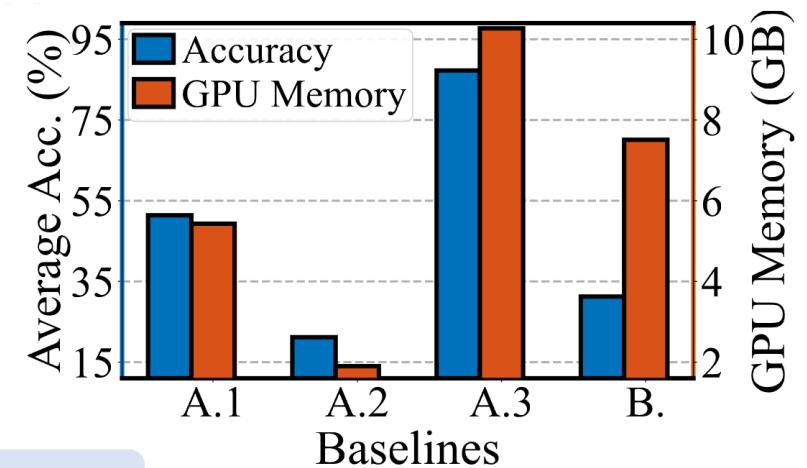
Evaluation – Lessons Learned

- AutoIOT can adjust the generated code to fulfill **different user requirements** considering constrained resources of IoT devices.

A.1: basic information of the task
A.2: constrained GPU memory + A.1
A.3: high accuracy demand + A.1

Developers need to specify **detailed performance requirements**.

Device Profiling



(c) Multimodal HAR

Conclusion & Takeaways

- AutoIOT is an LLM-driven automated natural language programming system for IoT applications.
- Limitations of AutoIOT
 - Cloud LLM (GPT-4) → Privacy concerns & Unstable networks
 - Knowledge retrieval → Large model & Strong language processing capabilities
- Further Work – GPlOT (SenSys '25)
 - Collect IoT-relevant text generation datasets
 - Fine-tune multiple locally deployed small language models

Thanks for Listening!

- AutoIOT: LLM-Driven Automated Natural Language Programming for AIoT Applications
- [Leming Shen](#), Qiang Yang, Yuanqing Zheng, Mo Li

