
AutoIOT: LLM-Driven Automated
Natural Language Programming for

AIoT Applications

Leming Shen1, Qiang Yang2, Yuanqing Zheng1, Mo Li3

1

1The Hong Kong Polytechnic University, 2University of Cambridge
3Hong Kong University of Science and Technology

ACM MobiCom 2025

Nov. 4-8, Hong Kong, China

Large Language Models (LLMs)

• LLMs revolutionize our interactions with AI

• LLMs exhibit remarkable natural language understanding capabilities

• Promising applications: chatbot, medical diagnosis, etc.

2

ChatGPT Gemini DeepSeek Chatbot Medical Diagnosis

Pioneer Concept: Penetrative AI [1]

• LLMs can comprehend and even interact with the physical world

3
[1] Xu, Huatao, et al. "Penetrative ai: Making llms comprehend the physical world." Proceedings of the 25th

International Workshop on Mobile Computing Systems and Applications. 2024.

Various Sensors

LLM
Emergency

Call

Response: It looks like you’ve
taken a hard fall.

Location First Aid

100, 101, 102, 103, 118,
103, 102, 100, 101, 119, …

Penetrative AI – Basic Workflow

4

Various Sensors

LLM
Emergency

Call

Response: It looks like you’ve
taken a hard fall.

Location First Aid

Down-sampling &
rounding

100, 101, 102, 103, 118,
103, 102, 100, 101, 119, …

* Objective *
Judge if the person falls or not.

* Collected Sensor Data *

Data Interpretation Prompt

Penetrative AI (Limitation 1)

• Compromised trustworthiness of the inference results

• Hard to verify the correctness

5

100, 101, 102, 103, 118,
103, 102, 100, 101, 119, …

Black Box LLM

The R-peaks are ……

Sensor

Data

Penetrative AI (Limitation 2)

• Transmitting sensor data over the network raises privacy concerns

6

100, 101, 102, 103, 118,
103, 102, 100, 101, 119, …

Black Box LLM
Sensor

Data Eavesdropping

Penetrative AI (Limitation 3)

• Sensor data often exhibits extensive length and high dimensionality
• Prohibitive token costs

• Increased response latency

• Infeasible due to token limits

7

Cloud LLM Token Costs

Token Limit

Exceeded

• Ideally, the integration of LLMs with AIoT should be trustworthy,
privacy-preserving, and communication-efficient

• LLMs have shown their remarkable capabilities in code generation …

8

GitHub Copilot Code Llama CURSOR

Research Question

• Ideally, the integration of LLMs with AIoT applications should be
trustworthy, privacy-preserving, and communication-efficient

• LLMs have shown their remarkable capabilities in code generation …

9

GitHub Copilot Code Llama CURSOR

Can we leverage LLMs to

synthesize programs to fulfill

AIoT application requirements?

Our Solution: AutoIOT

• Given a user requirement, AutoIOT automatically synthesizes
programs, which are locally executed to perform various AIoT tasks.

10

User Requirement AutoIOT Code

Our Solution: AutoIOT

• Given a user requirement, AutoIOT automatically synthesizes
programs, which are locally executed to perform various AIoT tasks.

11

User Requirement AutoIOT Code

• Enhance the explainability and trustworthiness

• Mitigate privacy concerns and reduce communication costs

• Efficiently process high-dimensional sensor data

Technical Challenges of AutoIOT

• C1: Lack of Domain Knowledge in AIoT

• C2: High Complexity of AIoT Tasks

• C3: Heavy Intervention and Constant Feedback

12

C1: Lack of Domain Knowledge in AIoT

• LLMs are pre-trained on general
corpus datasets.

• They may not include the latest
AIoT domain knowledge.

• Hallucination issues

13

Solution: Background Knowledge Retrieval

• Terminology Determination & Searching

• Context Database Construction

14

Please write some Python

code to develop a human

activity recognition model

using the XRF55 dataset.

User Problem Terminology

Determination Prompt
human activity
recognition

AutoIOT
XRF55 dataset

Results

Knowledge

Database

Retrieval

C2: High Complexity of AIoT Tasks

• Existing works generate code for individual modules or functions

• AIoT applications typically require systematic designs and integration
involving multiple functional components

15

Data Cleaning Signal Processing AI Model Construction & Training

C3: High Complexity of AIoT Tasks

• LLMs tend to provide
simple and general code

• Generates some null
functions without concrete
implementations

• Imports some nonexistent
packages

16

Help me implement a human activity recognition
system using the XRF55 dataset.

Certainly! First, we need to perform data cleaning
with some signal processing methods, then we
can …… Here is a simple solution:

import numpy as np
from XRF55 import dataset
def data_cleaning(signal):
 # Perform data cleaning
def signal_processing(signal):
 # Perform signal processing
def model_training(cleaned_signal):
 # Train the model

Python Copy code

C3: Heavy Intervention and Constant Feedback

• Provide timely feedback and constantly
intervene in the entire development process

• Specific reference materials

• Specific algorithms

• Clearly described methods

• Manual debugging

17

Solution 2: Automated Program Synthesis

• Chain-of-Thought (CoT) prompts → step-by-step reasoning.

• Mimic human-like divide-and-conquer reasoning.

18

User

Problem

Step 1 …

Modularized

Code Generation

Step 1 code </>

Integration

Final Code

Step n …

……

Outline Generation

Step n code </>

……

Solution 3: Automated Code Improvement

• Execute code in an executor

• Analyze executor’s outputs for debugging

• Prompts the LLM to adopt more advanced algorithms

• This initiates a new recursive cycle of program synthesis

19

Executor

Debug

Final Code Modify

Algorithm

Automated

Program Synthesis

Put All Things Together – AutoIOT

20

* Target *

Given the XRF55 dataset, please

load all mmWave data samples

from my local disk and develop a

human activity recognition model.

* Input *

The path to the dataset

* Output Format *

Case {mmWave data record index}

Recognition accuracy: 0.92

Case ……

Recognition accuracy: …

User Requirement

- Term1

- Term2, …

Terminology

Determination

Search Tool

Websites

Terminology

Searching

Knowledge

Database


Background Knowledge Retrieval

User Input ResponsePrompt

AutoIOT





Tool Pool

Sandbox

Encapsulated

Prompts

Store the

Results

Automated Program Synthesis

Outline

Generation

1. Load Data

2. ……

 Detailed

Design



1. Load Data

- Input data path

- Load each record …

8. Output Results

- Output index

- Output accuracy …

……



Code segment 1 </>

Modularized

Code Generation

Code segment 2 </>……

Modularized Code Integration



Code Improvement

Integrated CodeDebug



Modify

Algorithm

Final Program &

Documentation





Provide

Instructions

• Software Configurations
• AutoIOT agent: LangChain

• Default LLM: GPT-4

• Web search tool: Tavily AI

• Knowledge database: Chroma

• Hardware Configurations
• A workstation installed with Ubuntu 20.04 LTS

• An NVIDIA RTX 4090 GPU

Experiment Setup – Implementation

21

Experiment Setup – Applications

• Heartbeat Detection (MIT-BIH Arrhythmia Database [1]

• Baseline: Hamiltion, Christov, Engzee, Pan-Tompkins, SWT

• IMU-based HAR (WISDM dataset [2])

• Baseline: LSTM-RNN, 1D-CNN, Conv-LSTM, BiLSTM, NN

• mmWave-based HAR (XRF55 dataset (newly published) [3])

• Baseline: ResNet18, ResNet34, ResNet50, ResNet101

• Multimodal HAR (Harmony (newly published) [4])

• Baseline: Encoder-Classifier

22

[1] Moody, George B., and Roger G. Mark. "The impact of the MIT-BIH arrhythmia database." IEEE engineering in medicine and biology magazine (2001).

[2] Kwapisz, Jennifer R., Gary M. Weiss, and Samuel A. Moore. "Activity recognition using cell phone accelerometers." ACM KDD (2011).

[3] Wang, Fei, et al. "Xrf55: A radio frequency dataset for human indoor action analysis.“ ACM IMWUT (2024).

[4] Ouyang, Xiaomin, et al. "Harmony: Heterogeneous multi-modal federated learning through disentangled model training.“ ACM MobiSys (2023).

Evaluation – Overall Performance

23

AutoIOT-synthesized programs can achieve comparable performance to

the baselines and sometimes outperform them.

Evaluation – Overall Performance

24

Advanced signal processing algorithms (knowledge retrieval) High Accuracy

CUDA optimization strategy (iterative refinement) Moderate GPU Usage

Comprehensive module design (CoT prompt) Robustness & Fewer Errors

Further Experiments

• Ablation Study
• Background knowledge retrieval

• Chain-of-thought

• Code improvement

• User Study
• Objective Evaluation

• Subjective Evaluation

25

More details in our paper.

Evaluation – Lessons Learned

• Given a single performance objective, the LLM carries out extensive
optimization, sometimes at the cost of other important metrics.

26

Heartbeat Detection

A large sliding window

high accuracy but low precision

A method that can elicit comprehensive

and clear user requirements.

Evaluation – Lessons Learned

• AutoIOT can adjust the generated code to fulfill different user
requirements considering constrained resources of IoT devices.

27

A.1: basic information of the task

A.2: constrained GPU memory + A.1

A.3: high accuracy demand + A.1

Developers need to specify detailed

performance requirements. Device Profiling

Conclusion & Takeaways

• AutoIOT is an LLM-driven automated natural language programming
system for AIoT applications.

• Limitations of AutoIOT
• Cloud LLM (GPT-4) → Privacy concerns & Unstable networks

• Knowledge retrieval → Large model & Strong language processing capabilities

• Further Work – GPIoT (SenSys ’25)
• Collect IoT-relevant text generation datasets

• Fine-tune multiple locally deployed small language models

28

[1] Leming Shen, Qiang Yang, Xinyu Huang, Zijing Ma, and Yuanqing Zheng. "GPIoT: Tailoring

Small Language Models for IoT Program Synthesis and Development." SenSys 2025.

29

Thanks for Listening!

• AutoIOT: LLM-Driven Automated Natural
Language Programming for AIoT Applications

• Leming Shen, Qiang Yang, Yuanqing Zheng, Mo Li

ACM MobiCom 2025

Nov. 4-8, Hong Kong, China

	Slide 1: AutoIOT: LLM-Driven Automated Natural Language Programming for AIoT Applications
	Slide 2: Large Language Models (LLMs)
	Slide 3: Pioneer Concept: Penetrative AI [1]
	Slide 4: Penetrative AI – Basic Workflow
	Slide 5: Penetrative AI (Limitation 1)
	Slide 6: Penetrative AI (Limitation 2)
	Slide 7: Penetrative AI (Limitation 3)
	Slide 8
	Slide 9: Research Question
	Slide 10: Our Solution: AutoIOT
	Slide 11: Our Solution: AutoIOT
	Slide 12: Technical Challenges of AutoIOT
	Slide 13: C1: Lack of Domain Knowledge in AIoT
	Slide 14: Solution: Background Knowledge Retrieval
	Slide 15: C2: High Complexity of AIoT Tasks
	Slide 16: C3: High Complexity of AIoT Tasks
	Slide 17: C3: Heavy Intervention and Constant Feedback
	Slide 18: Solution 2: Automated Program Synthesis
	Slide 19: Solution 3: Automated Code Improvement
	Slide 20: Put All Things Together – AutoIOT
	Slide 21: Experiment Setup – Implementation
	Slide 22: Experiment Setup – Applications
	Slide 23: Evaluation – Overall Performance
	Slide 24: Evaluation – Overall Performance
	Slide 25: Further Experiments
	Slide 26: Evaluation – Lessons Learned
	Slide 27: Evaluation – Lessons Learned
	Slide 28: Conclusion & Takeaways
	Slide 29

