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Large Language Models (LLMs)

• LLMs revolutionize our interactions with AI

• LLMs exhibit remarkable natural language understanding capabilities

• Promising applications: chatbot, medical diagnosis, etc.
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Pioneer Concept: Penetrative AI [1]

• LLMs can comprehend and even interact with the physical world
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[1] Xu, Huatao, et al. "Penetrative ai: Making llms comprehend the physical world." Proceedings of the 25th 

International Workshop on Mobile Computing Systems and Applications. 2024.
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Penetrative AI – Basic Workflow
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Penetrative AI (Limitation 1)

• Compromised trustworthiness of the inference results

• Hard to verify the correctness
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Penetrative AI (Limitation 2)

• Transmitting sensor data over the network raises privacy concerns
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Penetrative AI (Limitation 3)

• Sensor data often exhibits extensive length and high dimensionality
• Prohibitive token costs

• Increased response latency

• Infeasible due to token limits

7
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• Ideally, the integration of LLMs with AIoT should be trustworthy, 
privacy-preserving, and communication-efficient

• LLMs have shown their remarkable capabilities in code generation …
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Research Question

• Ideally, the integration of LLMs with AIoT applications should be 
trustworthy, privacy-preserving, and communication-efficient

• LLMs have shown their remarkable capabilities in code generation …
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GitHub Copilot Code Llama CURSOR

Can we leverage LLMs to 

synthesize programs to fulfill 

AIoT application requirements?



Our Solution: AutoIOT

• Given a user requirement, AutoIOT automatically synthesizes 
programs, which are locally executed to perform various AIoT tasks.

10

User Requirement AutoIOT Code

                    
                     



Our Solution: AutoIOT

• Given a user requirement, AutoIOT automatically synthesizes 
programs, which are locally executed to perform various AIoT tasks.
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• Enhance the explainability and trustworthiness

• Mitigate privacy concerns and reduce communication costs

• Efficiently process high-dimensional sensor data



Technical Challenges of AutoIOT

• C1: Lack of Domain Knowledge in AIoT

• C2: High Complexity of AIoT Tasks

• C3: Heavy Intervention and Constant Feedback
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C1: Lack of Domain Knowledge in AIoT

• LLMs are pre-trained on general 
corpus datasets.

• They may not include the latest 
AIoT domain knowledge.

• Hallucination issues
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Solution: Background Knowledge Retrieval

• Terminology Determination & Searching

• Context Database Construction
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C2: High Complexity of AIoT Tasks

• Existing works generate code for individual modules or functions

• AIoT applications typically require systematic designs and integration 
involving multiple functional components
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Data Cleaning Signal Processing AI Model Construction & Training



C3: High Complexity of AIoT Tasks

• LLMs tend to provide 
simple and general code

• Generates some null 
functions without concrete 
implementations

• Imports some nonexistent 
packages
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Help me implement a human activity recognition 
system using the XRF55 dataset.

Certainly! First, we need to perform data cleaning 
with some signal processing methods, then we 
can …… Here is a simple solution:

import numpy as np
from XRF55 import dataset
def data_cleaning(signal):
  # Perform data cleaning
def signal_processing(signal):
  # Perform signal processing
def model_training(cleaned_signal):
  # Train the model

Python                                                  Copy code



C3: Heavy Intervention and Constant Feedback

• Provide timely feedback and constantly 
intervene in the entire development process

• Specific reference materials

• Specific algorithms

• Clearly described methods

• Manual debugging
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Solution 2: Automated Program Synthesis

• Chain-of-Thought (CoT) prompts → step-by-step reasoning.

• Mimic human-like divide-and-conquer reasoning.
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Solution 3: Automated Code Improvement

• Execute code in an executor

• Analyze executor’s outputs for debugging

• Prompts the LLM to adopt more advanced algorithms

• This initiates a new recursive cycle of program synthesis
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Put All Things Together – AutoIOT
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* Target *

Given the XRF55 dataset, please 
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from my local disk and develop a 
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The path to the dataset

* Output Format *

Case {mmWave data record index}

Recognition accuracy: 0.92
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• Software Configurations
• AutoIOT agent: LangChain

• Default LLM: GPT-4

• Web search tool: Tavily AI

• Knowledge database: Chroma

• Hardware Configurations
• A workstation installed with Ubuntu 20.04 LTS

• An NVIDIA RTX 4090 GPU

Experiment Setup – Implementation
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Experiment Setup – Applications

• Heartbeat Detection (MIT-BIH Arrhythmia Database [1]

• Baseline: Hamiltion, Christov, Engzee, Pan-Tompkins, SWT

• IMU-based HAR (WISDM dataset [2])

• Baseline: LSTM-RNN, 1D-CNN, Conv-LSTM, BiLSTM, NN

• mmWave-based HAR (XRF55 dataset (newly published) [3])

• Baseline: ResNet18, ResNet34, ResNet50, ResNet101

• Multimodal HAR (Harmony (newly published) [4])

• Baseline: Encoder-Classifier
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[1] Moody, George B., and Roger G. Mark. "The impact of the MIT-BIH arrhythmia database." IEEE engineering in medicine and biology magazine (2001).

[2] Kwapisz, Jennifer R., Gary M. Weiss, and Samuel A. Moore. "Activity recognition using cell phone accelerometers." ACM KDD (2011).

[3] Wang, Fei, et al. "Xrf55: A radio frequency dataset for human indoor action analysis.“ ACM IMWUT (2024).

[4] Ouyang, Xiaomin, et al. "Harmony: Heterogeneous multi-modal federated learning through disentangled model training.“ ACM MobiSys (2023).



Evaluation – Overall Performance
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AutoIOT-synthesized programs can achieve comparable performance to 

the baselines and sometimes outperform them.



Evaluation – Overall Performance
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Advanced signal processing algorithms (knowledge retrieval) High Accuracy

CUDA optimization strategy (iterative refinement) Moderate GPU Usage

Comprehensive module design (CoT prompt) Robustness & Fewer Errors



Further Experiments

• Ablation Study
• Background knowledge retrieval

• Chain-of-thought

• Code improvement

• User Study
• Objective Evaluation

• Subjective Evaluation
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More details in our paper.



Evaluation – Lessons Learned

• Given a single performance objective, the LLM carries out extensive 
optimization, sometimes at the cost of other important metrics.
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Heartbeat Detection

A large sliding window

high accuracy but low precision

A method that can elicit comprehensive 

and clear user requirements.



Evaluation – Lessons Learned

• AutoIOT can adjust the generated code to fulfill different user 
requirements considering constrained resources of IoT devices.
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A.1: basic information of the task

A.2: constrained GPU memory + A.1

A.3: high accuracy demand + A.1

Developers need to specify detailed 

performance requirements. Device Profiling



Conclusion & Takeaways

• AutoIOT is an LLM-driven automated natural language programming 
system for AIoT applications.

• Limitations of AutoIOT
• Cloud LLM (GPT-4) → Privacy concerns & Unstable networks

• Knowledge retrieval → Large model & Strong language processing capabilities

• Further Work – GPIoT (SenSys ’25)
• Collect IoT-relevant text generation datasets

• Fine-tune multiple locally deployed small language models
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[1] Leming Shen, Qiang Yang, Xinyu Huang, Zijing Ma, and Yuanqing Zheng. "GPIoT: Tailoring 

Small Language Models for IoT Program Synthesis and Development." SenSys 2025.
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